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INTRODUCTION TO CHAPTERS 1V, V
AND VI

The study of semi-simple (analytic or algebraic) groups and their Lie algebras
leads to the consideration of root systems, Coxeter groups and Tits systems.
Chapters IV, V and VI are devoted to these structures.

To orient the reader, we give several examples below.

I. Let g be a complex semi-simple Lie algebra and h a Cartan subalgebra
of g'. A root of g with respect to § is a non-zero linear form o on b such
that there exists a non-zero element z of g with [h,z] = a(h)z for all h € b.
These roots form a reduced root system R in the vector space h* dual to
h. Giving R determines g up to isomorphism and every reduced root system
is isomorphic to a root system obtained in this way. An automorphism of g
leaving b stable defines an automorphism of h* leaving R invariant, and every
automorphism of R is obtained in this way. The Weyl group of R consists of
all the automorphisms of §* defined by the inner automorphisms of g leaving
b stable; this is a Coxeter group.

Let G be a connected complex Lie group with Lie algebra g, and let I’
be the subgroup of G consisting of the elements h such that expg(27ih) = 1.
Let R be the root system in b inverse to R, let Q(R”) be the subgroup of §
generated by R™ and let P(R") be the subgroup associated to the subgroup
Q(R) of h* generated by R (i.e. the set of h € b such that A\(h) is an integer
for all A € Q(R)). Then P(R") > I' O Q(R"). Moreover, the centre of G
is canonically isomorphic to P(R”)/I" and the fundamental group of G to
I'/Q(R"). In particular, I" is equal to P(R") if G is the adjoint group and I"
is equal to Q(R") if G is simply-connected. Finally, the weights of the finite-
dimensional linear representations of G are the elements of the subgroup of
h* associated to I'.

IL. Let G be a semi-simple connected compact real Lie group, and let g be its
Lie algebra. Let T be a maximal torus of G, with Lie algebra t, and let X be
the group of characters of T. Let R be the set of non-zero elements a of X
such that there exists a non-zero element z of g with (Adt).z = a(t)z for all
t € T. Identify X with a lattice in the real vector space V=X ®z R;; then R
is a reduced root system in V. Let N be the normaliser of T in G; the action

! In this Introduction, we use freely the traditional terminology as well as the
notions defined in Chapters IV, V and VI.
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of N on T defines an isomorphism from the group N/T to the Weyl group of
R. We have P(R) D X D Q(R); moreover, X = P(R) if G is simply-connected
and X = Q(R) if the centre of G reduces to the identity element.

The complexified Lie algebra g(c) of g is semi-simple and (¢ is a Cartan
subalgebra of it. There exists a canonical isomorphism from V(¢ to the dual
of t(c) that transforms R into the root system of g(c) with respect to t(c;).

III. Let G be a connected semi-simple algebraic group over a commutative
field k. Let T be a maximal element of the set of tori of G split over k& and
let X be the group of characters of T (the homomorphisms from T to the
multiplicative group). We identify X with a lattice in the real vector space
V = X®z R. The roots of G with respect to T are the non-zero elements o of
X such that there exists a non-zero element x of the Lie algebra g of G with
(Adt).z = a(t)x for all ¢ € T. This gives a root system R in V, which is not
necessarily reduced. Let N be the normaliser and Z the centraliser of T in G
and let N(k) and Z(k) be their groups of rational points over k. The action
of N(k) on T defines an isomorphism from N(k)/Z(k) to the Weyl group of
R.

Let U be a maximal element of the set of unipotent subgroups of G, de-
fined over k and normalised by Z. Put P = Z.U. Then P(k) = Z(k).U(k) and
P(k) N N(k) = Z(k). Moreover, there exists a basis (a1,...,a,) of R such
that the weights of T in U are the positive roots of R for this basis; if S de-
notes the set of elements of N(k)/Z(k) that correspond, via the isomorphism
defined above, to the symmetries s, € W(R) associated to the roots a;, the
quadruple (G(k), P(k),N(k),S) is a Tits system.

IV. In the theory of semi-simple algebraic groups over a local field, Tits
systems are encountered whose Weyl group is the affine Weyl group of a
root system. For example, let G = SL(n +1,Q,) (with n > 1). Let B be
the group of matrices (a;;) € SL(n + 1,7Z,) such that a;; € pZ, for i < j,
and let N be the subgroup of G consisting of the matrices having only one
non-zero element in each row and column. Then there exists a subset S of
N/(BNN) such that the quadruple (G,B, N, S) is a Tits system. The group
W =N/(BNN) is the affine Weyl group of a root system of type A,; this is
an infinite Coxeter group.

Numerous conversations with J. Tits have been of invaluable assistance to us
in the preparation of these chapters. We thank him very cordially.
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CHAPTER IV
Coxeter Groups and Tits Systems

§1. COXETER GROUPS

In this section, W denotes a group written multiplicatively, with identity
element 1, and S denotes a set of generators of W such that S = S~! and
1 ¢ S. Every element of W is the product of a finite sequence of elements of
S. From no. 3 onwards we assume that every element of S is of order 2.

1. LENGTH AND REDUCED DECOMPOSITIONS

DEFINITION 1. Let w € W. The length of w (with respect to S), denoted
by ls(w) or simply by l(w), is the smallest integer ¢ > 0 such that w is
the product of a sequence of q elements of S. A reduced decomposition of w
(with respect to S) is any sequence s = (s1,...,8q) of elements of S such that
w=351...5 and ¢ = l(w).

Thus 1 is the unique element of length 0 and S consists of the elements
of length 1.

PROPOSITION 1. Let w and w' be in W. We have the formulas:

Hww') < Uw) +1(w), (1)

(w™) = U(w), (2)

[i(w) — 1w)] < W' ™). 3)

Let (s1,...,5p) and (s1,...,s;) be reduced decomposmons of w and w’
respectively. Thus [(w) = p and l(w ) = q. Since ww' = 81...5p8] ... 5g, We
have [(ww’) < p+ ¢, proving (1). Since S = S™! and w™! = s, " ... 57 1, we

have I(w™') < p = I(w). Replacing w by w™! gives the opposite inequality
p

l(w) < I(w™1), proving (2). Replacing w by ww' ™" in (1) and (2) gives the
relations

w) - I(w') < Uww' ™), (4)

Hww' ™) = l(w'w™). (5)
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Exchanging w and w’ in (4) gives I(w') — [(w) < l(ww'™") by (5), proving
3)-

COROLLARY. Let s = (s1,..-,8p) and s’ = (s1,...,8;) be two sequences
of elements of S such that w = s1...sp, and w' = s} ...s;. If the sequence
(81,--,8p,81,---,8;) 15 a reduced decomposition of ww', then s is a reduced
decomposition of w and s’ is one of w'.

By hypothesis, l(w) < p, l(w') < ¢ and l[(ww') = p+ ¢. By (1), we must
have l[(w) = p and (w’) = ¢, hence the corollary.

Remark In view of formulas (1) and (2), the formula d(w,w’) = I(ww'™")
defines a distance on W, invariant under right translations.

2. DIHEDRAL GROUPS

DEFINITION 2. A dihedral group is a group generated by two distinct ele-
ments of order two.

Ezample. Let M be the multiplicative group {1, —1}, and let m be an integer
> 2 (resp. m = o0). Then M acts on the group Z/mZ (resp. on Z) by (—1).x =
—z, and the corresponding semi-direct product of M by Z/mZ (resp. of M
by Z) is denoted by D,,. The elements of D, are thus the pairs (¢,z) with
€ = +1 and x € Z/mZ (resp. x € Z); the group law on D,, is given by the
formula

(e,z).(e',2") = (e€, 'z + 2'). (6)

We denote by ¢ the class of 1 modulo m (resp. ¢ = 1) and set
p=(-1,0), p'=(-11), m=(1,) (7)
Then p? = p/ =landr= pp'. The formulas
7 = (1,ne), pr"=(-1,n) (8)
show that Dy, is a dihedral group generated by {p, o'}
PROPOSITION 2. Assume that S consists of two distinct elements s and s’

of order 2.

(i) The subgroup P of W generated by p = ss’ is normal, and W is the
semi-direct product of the subgroup T = {1, s} and P. Moreover, (W : P) = 2.

(ii) Let m be the order (finite or infinite) of p. Then m > 2 and W is
of order 2m. There is a unique isomorphism ¢ from D,, to W such that
p(p) =s and p(p') = 5.

(i) We have sps™! = sss’s = s's = p~!, and hence

sptsTt =p (9)
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for every integer n. Since W is generated by {s, s'}, and hence by {s, p}, the
subgroup P is normal. It follows that TP is a subgroup of W, and since TP
contains s and s’ = sp, we have W = TP = PUsP. To prove (i), it is therefore
enough to show that W # P. If W = P, the group W would be commutative,
so p? = 525’2 = 1. But then the only elements of W = P would be 1 and p,
contradicting the hypothesis that W contains at least three elements, namely
1, s and s’

(ii) Since s # s’, we have p # 1 and so m > 2. Since P is of order m and
(W : P) = 2, the order of W is 2m. If m is finite (resp. infinite), there exists
an isomorphism ¢’ from Z/mZ (resp. Z) to P taking m to p. Moreover, there
exists an isomorphism ¢” from M = {1, -1} to T taking —1 to s. The group
W is the semi-direct product of T and P. In view of the formulas (9) and
pr™p~l = 7" ¢’ and ¢” induce an isomorphism ¢ from D,, to W such that
©(p) = s and () = p, and hence ¢(p’) = s’. The uniqueness of ¢ follows
from the fact that Dy, is generated by {p, o'}

Remark. Consider a dihedral group W of order 2m generated by two distinct
elements s and s’ of order 2. Denote by s, (resp. s;) the sequence of length ¢
whose odd (resp. even) numbered terms are equal to s and whose even (resp.
odd) numbered terms are equal to s’, and let w, (resp. wy) be the product
of the sequence s, (resp. s;). We have

wok = (88')%,  wory1 = (ss')*s,

why = (5'8)" = (s8')7F,  whyyy = (5'5)"s’ = (s8') s

If s = (s1,...,84) is a reduced decomposition (with respect to {s,s'}) of
an element w of W, then clearly s; # s;41 for 1 <4 < ¢— 1. Hence, s = s, or
s=s.

q

If m = oo, the elements (ss')"™ and (ss’)™s for n € Z are distinct. Hence,
the elements w, (¢ > 0) and wj (¢ > 0) are distinct, and if s is a reduced
decomposition of w, (resp. w;) we necessarily have s = s, (resp. s = s).
It follows from this that l(wy) = l(w;) = ¢ and that the set of reduced
decompositions of the elements of W consists of the sq and the sfz. Moreover,
every element of W has a unique reduced decomposition.

Suppose now that m is finite. If ¢ > 2m, we have wy = wg_2m and
Wy = Wy_o,,; if m < ¢ < 2m, we have wy = Wh,,_,, Wy = Wam—q. Hence,
neither s, nor s; are reduced decompositions if ¢ > m. It follows that each
of the 2m elements of W is one of the 2m elements wy = wy, wy and w; for
1< g <m-1, and w, = w),,. These 2m elements are thus distinct and it
follows as above that I(wg) = l(w}) = ¢ for ¢ < m and that the set of reduced
decompositions of elements of W consists of the sy and the s for 0 < g <m.
Every element of W except wy, has a unique reduced decomposition; w,, has

two.
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3. FIRST PROPERTIES OF COXETER GROUPS

Recall that from now on we assume that the elements of S are of order 2.

DEFINITION 3. (W, S) is said to be a Cozeter system if it satisfies the fol-
lowing condition:

(C) For s,s' in S, let m(s,s’) be the order of ss' and let 1 be the set of
pairs (8, s,' ) such that m(s, s’) is finite. The generating set S and the relations
(s8")™5) =1 for (s,s') in 1 form a presentation® of the group W.

When (W, S) is a Coxeter system, one also says, by abuse of language,
that W is a Cozeter group.

Ezamples. 1) Let m be an integer > 2 or co and let W be a group defined by

a set of generators S = {s,s'} and the relations s? = s'> = 1 when m = oo,
s> = 2 = (ss')™ = 1 when m is finite. Consider on the other hand the
dihedral group D,, (no. 2, Fzample) and the elements p and p’ of D,,, defined
by (7). Since p? = p'> = 1 and (pp’)™ = 1 when m is finite, there exists a
unique homomorphism f from W to D,, such that f(s) = p and f(s') = p’.
Since pp’ is of order m, it follows that ss’ is itself of order m. Hence, (W, S) is
a Coxeter system, W is a dihedral group of order 2m and f is an isomorphism
(Prop. 2).

By transport of structure, it follows that every dihedral group is a Coxeter
group.

2) Let &, be the symmetric group of degree n, with n > 2. Let s; be the
transposition of ¢ and ¢+ 1 for 1 < 4 < n, and let S = {s1,...,8n—1}. One can
show (§2, no.4, Ezample and § 1, Exerc. 4) that (&,,S) is a Coxeter system.

3) For the classification of finite Coxeter groups, cf. Chap. 4, §4.

Remark. Suppose that (W, S) is a Coxeter system. There exists a homomorphism
e from W to the group {1,—1} characterized by e(s) = —1 for all s € S. We call
e(w) the signature of wj; it is equal to (—1)"(*). The formula e(ww') = e(w)e(w’)
thus translates into l(ww') = I(w) + I(w’) mod. 2.

! This means that (W, S) has the following universal property: given a group G and

a map f from S to G such that (f(s)f(s'))™**?) =1 for (s,s') in I, there exists
a homomorphism g from W to G extending f. This homomorphism is unique
because S generates W. An equivalent form of this definition is the following. Let
W be a group, f a homomorphism from W to W and h a map from S to W such

that f(h(s)) = s and (h(s)h(s'))™**") =1 for (s,s') in S and such that the h(s)

(for s € S) generate W. Then f is injective (and hence is an isomorphism from

W to W).
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PROPOSITION 3. Assume that (W,S) is a Coxzeter system. Then, two ele-
ments s and s' of S are conjugate® in W if and only if the following condition
1s satisfied:

(I) There ezists a finite sequence (s1,...,8q) of elements of S such that s; =
8,8¢ = 8’ and sjs;y1 is of finite odd order for 1 < j < gq.

Let s and s’ in S be such that p = ss’ is of finite order 2n + 1. By (9),
sp~™ = p"s hence

psp " =ppts =p ls=s'ss =4, (10)
and s’ is conjugate to s.

For all sin S, let A, be the set of s’ € S satisfying (I). With the hypotheses
in (I), the elements s; and s;41 are conjugate for 1 < j < g by the above,
hence every element s’ of A, is conjugate to s.

Let f be the map from S to M = {1,—1} equal to 1 on A; and to —1
on S—-A;. Let s/ and s” in S be such that s’s” is of finite order m. Then
f(s")f(s") = 1if s’ and s” are both in A; or both in S—A;. In the other
case, f(s')f(s") = —1, but m is even. Thus (f(s')f(s”))™ = 1 in all cases.
Since (W, S) is a Coxeter system, there exists a homomorphism g from W to
M inducing f on S. Let s’ be a conjugate of s. Since s belongs to the kernel
of g, so does §', hence f(s') = g(s’) =1 and finally s’ € A,;. Q.E.D.

4. REDUCED DECOMPOSITIONS IN A COXETER GROUP

Suppose that (W, S) is a Coxeter system. Let T be the set of conjugates in

W of elements of S. For any finite sequence s = (sy,...,sq) of elements of S,
denote by &(s) the sequence (t1,...,tq) of elements of T defined by
ti=(s1...85-1)8j(s1...8-1)"" for1<j<q. (11)

Then t; = s; and s1...84 = tgtq—1...t1. For any element ¢t € T, denote by
n(s,t) the number of integers j such that 1 < j < g and t; = ¢. Finally, put

R={1,-1} x T.
Lemma 1. (i) Let w € W and t € T. The number (—1)™®!) has the same
value n(w,t) for all sequences s = (s1,...,84) of elements of S such that

w=2S81... Sq-
(ii) For w € W, let U, be the map from R to itself defined by

Uu(e, t) = (en(w™?,t), wtw™) (e = +1,t € T). (12)

The map w — Uy, is a homomorphism from W to the group of permutations

of R.

% Recall that two elements (resp. two subsets) of a group W are said to be conjugate
if there exists an inner automorphism of W that transforms one into the other.
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For s € S, define a map U; from R to itself by
Us(e,t) = (e.(—=1)%¢,sts™!) (e =+1,t€T), (13)

where §, . is the Kronecker symbol. It is immediate that U2 = Idg, which
shows that U, is a permutation of R.

Let s = (s1,...,84) be a sequence of elements of S. Put w = s,...s; and
Us = Uy, ... Us,. We shall show, by induction on g, that

Us(e, t) = (e.(=1)"®D wiw™). (14)

This is clear for ¢ =0,1. If ¢ > 1, put s’ = (s1,...,54-1) and

’
w = S¢g-1...81-

Using the induction hypothesis, we obtain
Us(e, t) = Us, (e.(~1)""9), w'tw' ™)

— (6.(_1)”(5 ’t)+6sq"”,‘wl_1,’wtw_1).

But &(s) = (@(s’),w'_lsqw’) and n(s,t) = n(s',t) + dyr-15,u,¢, Proving
formula (14).

Now let s,s" € S be such that p = ss’ has finite order m. Let s =
(s1,---,82m) be the sequence of elements of S defined by s; = s for j odd
and s; = ¢’ for j even. Then Sgm, ...s1 = p~™ =1 and formula (11) implies
that

t;=p''s for1<j<2m. (15)

Since p is of order m, the elements #1,...,t,, are distinct and t; 4, = t; for
1 < j < m. Forallt € T, the integer n(s,t) is thus equal to 0 or 2 and
(14) shows that Us = Idg. In other words, (UsUy )™ = Idr. Thus, by the
definition of Coxeter systems, there exists a homomorphism w — U, from
W to the group of permutations of R such that U is given by the right-hand
side of (13). Then U, = Us for every sequence s = (si1,...,5q) such that
w = 8q...51 and Lemma 1 follows immediately from (14).

Lemma 2. Let s = (s1,...,84), D(s) = (t1,...,tq) and w = s1...54. Let
T be the set of elements of T such that n(w,t) = —1. Then s is a reduced
decomposition of w if and only if the t; are distinct, and in that case Ty, =
{t1,...,tq} and Card(Ty) = l(w).

Clearly T,, C {t1,...,tq}. Taking s to be reduced, it follows that
Card(T,,) < I(w). Moreover, if the t; are distinct, then n(s,t) is equal to
1 or 0 according to whether ¢ does or does not belong to {t1,...,tq}. It
follows that Ty, = {t1,...,tq} and that ¢ = Card(T,) < l(w), which im-
plies that s is reduced. Suppose finally that t; = t; with ¢ < j. This gives
$; = usju~t, with u = s;j41...s;_1, hence
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w=81...8-18i41..-8j—18j41...5q-

This shows that s is not a reduced decomposition of w.

Lemma 3. Let w € W and s € S be such that [(sw) < l(w). For any sequence
S = (81,...,8q) of elements of S with w = s1...3g, there exists an integer j
such that 1 < j < q and

881...8j—1 =81...8j-18;5.

Let p be the length of w and w’ = sw. By the Remark of no. 3, l(w') =
l(w) + 1 mod. 2. The hypothesis I(w’) < l(w) and the relation

ll(w) — I(w)] < Www' ™M) =1(s) =1

thus leads to {(w’) = p — 1. Choose a reduced decomposition

(s 81)
of w' and put s = (s,8},...,5,_1) and &(s') = (t},...,t,). It is clear that
s’ is a reduced decomposition of w and that t; = s. The elements ¢}, ... ,t;,

being distinct by Lemma 2, we have n(s’, s) = 1. Since w is the product of the
sequence s, we have n(s, s) = n(s’, s) mod. 2 by Lemma 1, hence n(s, s) # 0.
Consequently, s is equal to one of the elements t; of the sequence é(s), hence
the lemma.

Remark. The set T,, defined in Lemma 2 consists of the elements of the
form w”sw” ™" corresponding to the triples (w',w",s) € W x W x S such
that w = w”sw’ and I(w') + l(w") + 1 = l(w).

5. THE EXCHANGE CONDITION

The “exchange condition” is the following assertion about (W, S):

(E) Let w € W and s € S be such that l(sw) < l(w). For any reduced
decomposition (s1,...,8q) of w, there exists an integer j such that1 < j < g
and

§81...8j—-1 = 81...55-18;5. (16)
We assume in this number that (W, S) satisfies (E). By Lemma 3, this is so if

(W, S) is a Coxeter system. The results of this number thus apply to Coxeter
systems.

PROPOSITION 4. Let s € S, w € W and s = (s1,...,54) be a reduced
decomposition of w. Then one of the following must hold:

a) l(sw) =l(w) + 1 and (s, s1,...,34) is a reduced decomposition of sw.
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b) l(sw) = l(w) — 1 and there exists an integer j such that 1 < j < g,
(81,---18j—1, Sj+1,- - -, Sq) s a reduced decomposition of sw and (s, s1,. - -, -1,
Sj41,---18q) 95 a reduced decomposition of w.

Put w' = sw. By formula (3) of no. 1, we have

li(w) = Uw)] < U(s) = 1.
We distinguish two cases:

a) l(w') > l(w). Then l(w') = ¢+ 1 and w’' = s51... 54, SO

(8,81,..%,8q)
is a reduced decomposition of w'.

b) l(w') < l(w). By (E), there exists an integer j such that 1 < j < ¢ and
(16) is satisfied. Then w = 881 ...5j-15j41 - -.5q and hence

!
w =81...8j-18j41---8q-

Since ¢ — 1 < l(w’) < g, it follows that I(w') = ¢ — 1 and that (s1,...,s;5-1,
Sj+1,---,8q) is a reduced decomposition of w’.

Lemma 4. Let w € W have length q > 1, let D be the set of reduced decompo-
sitions of w, and let F be a map from D to a set E. Assume that F(s) = F(s')
if the elements s = (s1,...,84), 8 = (81,...,5;) of D satisfy one of the
following hypotheses:

a) s1 =8y 0T 84 = 8.
b) There exist s and s’ in S such that s; = s}, = s and s = s; =4 forj
odd and k even.

Then F is constant.

A) Let s, s’ € D and put t = (s}, 51,...,84—1). We are going to show
that if F(s) # F(s’) then t € D and F(t) # F(s). Indeed, w = s} ...s; and
hence sjw = s5...s; is of length < g. By Prop. 4, there exists an integer
j such that 1 < j < ¢ and the sequence u = (s, 81,...,8j-1,5j+1,---»5q)
belongs to D. We have F(u) = F(s’) by condition a); if j # ¢ we would have
F(s) = F(u) for the same reason, and hence F(s) = F(s’) contrary to our
hypothesis. Thus j = q and hence t = u € D and F(t) = F(s) # F(s).

B) Let s and s’ belong to D. For any integer j with 0 < j < g + 1 define
a sequence s; of ¢ elements of S as follows:

’ ’
S0 = (81,--+,8g)
s1 = (S1,-..,q)
_ ’ ’
Sq+1_k—(81,31,...,81,81,31,32,...,8k) (17)
forg—kevenand 0 <k <gq
’ ’
Sqg+1-k = (Slasla‘")51751)31’32)'-'7Sk)

forg—koddand 0 < k <g.
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Denote by (H;) the assertion “s; € D,s;j;1 € D and F(s;) # F(sj+1)”. By
A), (H;) = (Hj41) for 0 < j < g, and (H,) is not satisfied by condition
b). Hence, (Hp) is not satisfied. Since sy = s’ and s; = s, it follows that
F(s) = F(s').

PROPOSITION 5. Let M be a monoid (with unit element 1) and f a map
from S to M. For s,s' € S, let m(s,s') be the order of ss' and put

(f(s)f(s))" if m(s,s") = 21, | finite
a(s, ') = (f(8)F()'f(s) if m(s,s') =20+ 1,1 finite  (18)
1

if m(s,s") = oo.

If a(s,s') = a(s', s) whenever s # s’ are in S, there exists a map g from W

to M such that
g(w) = f(s1)... f(sq) (19)

for all w € W and any reduced decomposition (s1,...,sq) of w.

For any w € W, let D,, be the set of reduced decompositions of w and
Fy the map from D, to M defined by

Fuw(s1,.--,8q) = f(51) ... f(34)-

We are going to prove by induction on the length of w that F,, is constant,
which will establish Prop. 5. The cases [(w) = 0,1 being trivial, we assume
that ¢ > 2 and that our assertion is proved for the elements w with I(w) < g.
Let w be of length q and s,s’ € D,; by Lemma 4 it suffices to prove that
Fy(s) = Fy(s’) in cases a) and b) of that lemma.

a) The formula

Fu(s1,...,8¢) = f(s1)Fuwr(s2,...,8¢) = Fur(81,...,54-1)f(8q)

for w' = s;...54—1 and w” = s3...s4 and the induction hypothesis show
that Fy,(s) = Fy(s') if 51 = 87 or 54 = .

b) Suppose that there exist two elements s and s’ of S such that s; = s} =
s and s, = s; = s’ for j odd and k even. It suffices to treat the case s # s'.
The sequences s and s’ are then two distinct reduced decompositions of w in
the dihedral group generated by s and s’. By the Remark in no. 2, the order
m of ss’ is necessarily finite and, in the notation of that remark, s = s,,, and
s’ = s],. Consequently, F,,(s) = a(s, s') and Fy,(s’) = a(s’, s) and hence

Fu(s) = Fu(s).
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6. CHARACTERISATION OF COXETER GROUPS

THEOREM 1. (W,S) is a Cozeter system if and only if it satisfies the ex-
change condition (E) of no. 5.
Lemma 3 of no. 4 shows that any Coxeter system satisfies (E).
Conversely, suppose that (E) is satisfied. Let G be a group and f a map
from S to G such that (f(s)f(s’))™ = 1 whenever s and s’ belong to S and
ss' is of finite order m. By Prop. 5, there exists a map g from W to G such
that

g(w) = f(s1)... f(sq) (20)
whenever w = s1...84 is of length ¢g. To prove that (W,S) is a Coxeter

system, it suffices to prove that g is a homomorphism, which is a consequence
of the formula

g(sw) = f(s)g(w) for seS,weW (21)
since S generates W. By Prop. 4 of no. 5, only two cases are possible:
a) l(sw) = l(w) + 1: if (s1,..., Sq) is a reduced decomposition of w, then
(s,81,...,84) is a reduced decomposition of sw, hence (21).

b) l(sw) = l(w) — 1: put w’ = sw; then w = sw’ and I(sw’) = I(w') + 1.
By a), g(w) = £(s)g(sw) and hence £(s)g(w) = g(sw) since (f(s))? = 1.

7. FAMILIES OF PARTITIONS

Suppose that (W, S) is a Coxeter system. For any s € S, let P, be the set of
elements w in W such that {(sw) > l(w). We have the following properties:

(A) sQS P, = {1}

Indeed, let w # 1 be in W and let (s, ..., sq) be a reduced decomposition
of w. Then ¢ > 1 and (s2,...,8,) is a reduced decomposition of syw, so
l(w) = q and I(s;w) = ¢ — 1. Hence, w ¢ Py, .

(B) For any s in S, the sets Ps and sP, form a partition of W.
Let w € W and s € S. By Prop. 4 of no. 5, we must distinguish two cases:

a) l(sw) = l(w) + 1: then w € P,.
b) I(sw) = l(w) — 1: put w' = sw so w = sw'; then

l(w') < l(sw)
hence w’ € Py, that is w € sP;.

(C) Let s,s" be in S and let w be in W. If w € Py and ws' € P then
sw=ws’.
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Let ¢ be the length of w. From w € P, it follows that I(sw) = q + 1;
and from ws’ € Py it follows that [(sws’) = l(ws’) — 1 < g. Since [(sws’) =
I(sw) £ 1, we have finally that l(ws’) = ¢ + 1 and I(sws’) = q.

Let (s1,...,84) be a reduced decomposition of w and sqq1 = §'; then
(81,...,8¢,8q+1) is a reduced decomposition of the element ws’ of length
g+ 1. By the exchange condition, there exists an integer j with 1 < j < ¢g+1
such that

881...8j—-1 = 81...85. (22)

If 1 < j < g, we would have sw = s1...5j-18;41...84 contradicting the
formula I(sw) = ¢ + 1. Thus j = ¢+ 1 and formula (22) can be written
sw = ws'.

Conversely, we have the following result:

PROPOSITION 6. Let (Ps)ses be a family of subsets of W satisfying (C)
and the following conditions:

(A 1eP, forallses.
(B') The sets P, and sP, are disjoint for all s € S.

Then, (W,S) is a Cozeter system and P, consists of the elements w of
W such that I(sw) > l(w).

Let s € S and w € W. There are two possibilities:
a) w ¢ P,. Let (s1,...,84) be a reduced decomposition of w and
Wi = 81...55

for 1 < j < g; also put wp = 1. Since wy € P, by (A’) and since w = w, is
not in Py, there exists an integer j with 1 < j < g such that w;_; € P, and
w; = w;j_18; does not belong to P,. By (C),

SWj_1 = W;j—15;.
We have thus proved the formula

881 ...8j—1 = 81...5j-15;
which implies that sw = s1...8;-18;41...8¢ and l(sw) < l(w).

b) w € Ps: put w' = sw, so that w’ ¢ P, by (B’). By a), we then have
I(sw') < l(w'), that is l(w) < I(sw).

Comparison of a) and b) proves that P, consists of those w € W such
that [(sw) > l(w). The exchange condition follows from this as we have seen
in a), hence (W, S) is a Coxeter system (Th. 1 of no. 6).
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8. SUBGROUPS OF COXETER GROUPS

In this number, we assume that (W, S) is a Coxeter system. For any subset
X of S, we denote by Wx the subgroup of W generated by X.

PROPOSITION 7. Let w be in W. There exists a subset S,, of S such that
{s1,...,8¢} = Sy for any reduced decomposition (s1,...,sq) of w.

Denote by M the monoid consisting of the subsets of S with the compo-
sition law (A,B) — A U B; the identity element of M is @. Put f(s) = {s}
for s € S. We are going to apply Prop. 5 of no. 5 to M and f. We have
a(s,s’) = {s,s'} for s,s" in S if m(s, s’) is finite, hence there exists a map
g :w— Sy from W to M such that g(w) = f(s1) U--- U f(sq), that is
Sw = {s1,...,84} for any w € W and any reduced decomposition (s, ..., Sq)
of w.

COROLLARY 1. For any subset X of S, the subgroup Wx of W consists of
the elements w of W such that S,, C X.
1

Ifw=s1...5 with s1,...,84 in S, then w™" = s4...51; hence
Sw-1 =S4 (23)

Prop. 4 of no. 5 shows that S, C {s}US, for s € S and w’ € W, which
implies the formula
Sww’ C Sw ) Sw' (24)

by induction on the length of w. By (23) and (24), the set U of w € W such
that S,, C X is a subgroup of W; we have X ¢ U C Wy, hence U = Wx.

COROLLARY 2. For any subset X of S, we have Wx NS = X.
This follows from Cor. 1 and the formula S; = {s} for s in S.

COROLLARY 3. The set S is a minimal generating set of W.

If X C S generates W, then W = Wx and hence X = SNWx = S by
Cor. 2.

COROLLARY 4. For any subset X of S and any w in Wx, the length of w
with respect to the generating set X of Wx is equal to lg(w).

Let (s1,...,8q) be a reduced decomposition of w considered as an element
of W. We have w = s1...54 and s; € X for 1 < j < ¢ (Cor. 1); moreover, w
cannot be a product of ¢’ < g elements of X C S by definition of ¢ = Ig(w).

THEOREM 2. (i) For any subset X of S, the pair (Wx,X) is a Cozeter
system.
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(i) Let (X;)ie1 be a family of subsets of S. If X = _ﬂl X;, then Wx =
€
'QI W,
(ili) Let X and X' be two subsets of S. Then Wx C Wx: (resp. Wx = Wx)
if and only if X C X’ (resp. X =X').
Every element of X is of order 2 and X generates Wx. Let z € X and
w € Wy with Ix(zw) < Ix(w) = ¢. By Cor. 4 of Prop. 7, we have

Is(zw) < lg(w) = q.

Let z1,...,z4 be elements of X such that w = z; ... z,. Since (W, S) satisfies
the exchange condition (Th. 1 of no. 6), there exists an integer j such that
1 <j<gqand zzy...2;_1 = z1...25_12;. Thus, (Wx,X) satisfies the
exchange condition and is therefore a Coxeter system (Th. 1 of no. 6). This
proves (i).

Assertions (ii) and (iii) follow immediately from Cor. 1 of Prop. 7.

9. COXETER MATRICES AND COXETER GRAPHS

DEFINITION 4. Let 1 be a set. A Cozeter matriz of type I is a symmetric
square matric M = (my;); je1 whose entries are integers or +00 satisfying
the relations

my =1 foralliel; (25)
my; =2 fori,j €1 with i # j. (26)

A Coxeter graph of type 1 is (by abuse of language) a pair consisting of a
graph I'® having I as its set of vertices and a map f from the set of edges of
this graph to the set consisting of +oo and the set of integers > 3. I is called
the underlying graph of the Cozeter graph (I, f).

A Coxeter graph (I, f) is associated to any Coxeter matrix M of type I
as follows:

the graph I' has set of vertices I and set of edges the set pairs {i,j} of
elements of I such that m;; > 3, and the map f associates to the edge {4, 5}
the corresponding element m;; of M.

It is clear that this gives rise to a bijection between the set of Coxeter
matrices of type I and the set of Coxeter graphs of type I.

To assist the reader in following our arguments, we often represent a Coxeter
graph of type I by the diagram used to represent its underlying graph, and write
either next to or above each edge {7,5} the number f({3,j}). We generally omit
these numbers if they are equal to 3.

% See the appendix for the definition and properties of graphs used here.
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If (W,S) is a Coxeter system, the matrix M = (m(s,s))s,s’es, Where
m(s, s’) is the order of ss’, is a Coxeter matrix of type S which is called the
Coxeter matrix of (W,S): indeed, m(s,s) = 1 since s> = 1 for all s € S,
and m(s,s’) = m(s’,s) > 2 if s # s’ since ss’ = (s's)™! is then # 1. The
Coxeter graph (I, f) associated to M is called the Coxeter graph of (W,S).
We remark that two vertices s and s’ of I" are joined if and only if s and s’ do
not commute. For example, the Coxeter matrix of a dihedral group of order

2m is <1711 T) and its Coxeter graph is represented by
o—o

when m > 3 (or
o—o

if m = 3) and by
o o

when m = 2. *The Coxeter graph of the symmetric group &, is represented
by

[, O O=¢ ¢ ¢ =0 2]

(n — 1 vertices.).

We show later (Chap. V, §4) that, conversely, any Coxeter matrix is the matrix
of a Coxeter system.

A Coxeter system (W, S) is said to be irreducible if the underlying graph
of its Coxeter graph is connected (Appendix, no. 2) and non-empty. Equiv-
alently, S is non-empty and there exists no partition of S into two distinct
subsets S’ and S” of S such that every element of S’ commutes with every
element of S”. More generally, let (I;);c1 be the family of connected com-
ponents of I' (Appendix, no. 2) and let S; be the set of vertices of I;. Let
W,; = Ws, be the subgroup of W generated by S; (cf. no. 8). Then the
(W, S;) are irreducible Coxeter systems (no. 8, Th. 2) called the irreducible
components of (W, S). Moreover, the group W is the restricted direct product*
of the subgroups W; for ¢ € I. Indeed, this follows from the following more
general proposition:

4 A group G is the restricted direct product of a family (G;);e1 of subgroups if, for
any finite subset J of I, the subgroup G of G generated by the G; for ¢ € J is the
direct product of the G; for ¢ € J and if G is the union of the G;. Equivalently,
every element of G; commutes with every element of G; for ¢ # j and every

element of G can be written uniquely as a product HI 9i with g; € G; and ¢g; =1
i€
for all but finitely many indices ¢. This last condition is equivalent to saying that

G is generated by the union of the G; and that G; NGy = {1} for all ¢ € I and
all finite subsets J of I such that ¢ ¢ J.



§2. TITS SYSTEMS 15

PROPOSITION 8. Let (S;)ic1 be a partition of S such that every element
of S; commutes with every element of S; if i # j. For all i € 1, let W; be
the subgroup generated by S;. Then W is the restricted direct product of the
family (W;);er.
It is clear that for all ¢ € I the subgroup W generated by the union of
the W; for j # ¢ is also generated by S} = g S;. Thus
i#£j

W, N W, =Wy = {1}

by Th. 2 of no. 8. Since W is generated by the union of the W;, this proves
the proposition.

§2. TITS SYSTEMS

In this paragraph, the letters G,B,N,S, T, W have the meaning indicated in
no. 1 below.

1. DEFINITIONS AND FIRST PROPERTIES

Let G be a group and B a subgroup of G. The group B x B acts on G by
(b,b').g = bgb'~* for b,/ € B and g € G. The orbits of B x B on G are the
sets BgB for g € G, and are called the double cosets of G with respect to B.
They form a partition of G; the corresponding quotient is denoted by B\G/B.
If C and C’ are double cosets, CC’ is a union of double cosets.

DEFINITION 1. A Tits system is a quadruple (G,B,N,S), where G is a
group, B and N are two subgroups of G and S is a subset of N/(B N N),
satisfying the following azxioms:

(T1) The set BUN generates G and BN N is a normal subgroup of N.

(T2) The set S generates the group W = N/(BNN) and consists of elements
of order 2.

(T3) sBw C BuBUBswB for s €S and w € W. ®

(T4) For alls€ S, sBs ¢ B.

The group W = N/(B N N) is sometimes called the Weyl group of the Tits
system (G, B, N, S).

5 Every element of W is a coset modulo BN N, and is thus a subset of G; hence
products such as BwB make sense. More generally, for any subset A of W, we

denote by BAB the subset LGJA BwB.
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Remarks. 1) We shall see in no. 5 (Cor. of Th. 3) that, if (G, B, N) is given,
there exists at most one subset S of N/(BNN) such that (G, B, N, S) is a Tits
system.

2) Let (G, B, N, S) be a Tits system, and let Z be a normal subgroup of G
contained in B. Let G’ = G/Z,B’ = B/Z,N’ = N/(ZNN), and let S’ be the
image of S in N’/(B' N N”). Then one sees immediately that (G',B’,N’,S') is
a Tits system.

Throughout this paragraph, with (G,B,N,S) denoting a Tits system, we
set T=BNN and W = N/T. A double coset means a double coset of G with
respect to B. For any w € W, we set C(w) = BwB; this is a double coset.

We are going to deduce several elementary consequences of the axioms
(T1) to (T4). We denote by w,w’, ... elements of W and by s, ¢/, ... elements
of S. The following relations are clear:

C(1) =B, C(ww') Cc C(w).C(w'), C(w™!)=C(w)™™ (1)
Axiom (T3) can also be written in the form
C(s).C(w) C C(w) U C(sw). (2)

Moreover, since C(sw) C C(s).C(w) by (1) and since C(s).C(w) is a union of
double cosets, there are only two possibilities:
_ [ C(sw) if C(w) ¢ C(s).C(w)
C(s)-Clw) = { Clw) UC(sw) if Clw) C Cs).Clw). (3)
By (T4), B # C(s).C(s); putting w = s in (3) and using the relation s2 = 1,

we obtain

C(s).C(s) = BUC(s). (4)

This formula shows that B U C(s) is a subgroup of G. Multiplying both
sides of (4) on the right by C(w), and using formula (3) and the relation

B.C(w) = C(w),

we obtain

C(s).C(s).C(w) = C(w) U C(sw). (5)

Taking the inverses of the sets entering into formulas (2), (3) and (5) and
then replacing w by w™!, we obtain the formulas

C(w).C(s) € C(w) U C(ws) 2)
_ J C(ws) if C(w) ¢ C(w).C(s) /
Clw).Cls) = {C(w) UC(ws) if Clw) C Cluw).C(s) (3)

C(w).C(s).C(s) = C(w) U C(ws). (5"
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Lemma 1. Let sq,...,84 €S and let w € W. We have

C(s1...80).Cw)c U C(syy...s,w0),
(1yeemsip
where (iy,...,1,) denotes the set of strictly increasing sequences of integers
in the interval (1, q).
We argue by induction on g, the case ¢ = 0 being trivial. If ¢ > 1, we
have C(s;...s4).C(w) C C(s1).C(s2...54).C(w). By the induction hypothe-
sis, C(sz...54).C(w) is contained in the union of the C(sj, ...s;,w), where

2€ < <jp<yq

By (T3), the set C(s1).C(sj, - ..s;,w) is contained in the union of the sets
C(s18j, ... s;,w) and C(sy, ... s;,w). This proves the lemma.

2. AN EXAMPLE

Let k be a field, n an integer > 0, and (e;) the canonical basis of k™. Let
G = GL(n, k), let B be the upper triangular subgroup of G, and let N be the
subgroup of G consisting of the matrices having exactly one non-zero element
in each row and column. An element of N permutes the lines ke;; this gives
rise to a surjective homomorphism N — &,, whose kernel is the subgroup
T = BN N of diagonal matrices, and allows us to identify W = N/T with
S, We denote by s; (1 < j < n— 1) the element of W corresponding to the
transposition of § and j+ 1; let S be the set of s;. The quadruple (G,B,N,S)
is a Tits system. Indeed:

Axiom (T1) follows from Cor. 2 of Prop. 14 of Algebra, Chap. II, §10,
no. 13.

Axiom (T2) is proved in Algebra, Chap. I, Correction to p. 97.

Axiom (T4) is immediate.

It remains to verify axiom (T3), i.e.

s;Bw C BuBUBs;wB forl1<j<n—-1weW,
or equivalently,
s;B C BB'UBs;B’, with B’ = wBw™'.

Let G; be the subgroup of G consisting of the elements that fix the e; for
i # j,j + 1 and stabilize the plane spanned by e; and ej41; this group is
isomorphic to GL(2,k). One checks that G;B = BG;. Since s; € Gj, we
have s;B C BG;, and it suffices to prove that

G;c(Bn Gj)(B/ NG;)uU (ﬂGj)Sj(B, nG;).

Identify G; with GL(2, k); the group BNG; is then identified with the upper
triangular subgroup By of GL(2,k), while the group B’ N G; is identified
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with By when w(j) < w(j + 1) and with the lower triangular subgroup B3
otherwise. In the first case, the formula to be proved can be written

GL(2,k) = B, UBysBy where s = (‘1] é);

this follows for example from the fact that By is the stabilizer of a point for
the action of GL(2, k) on the projective line P (k), and acts transitively on
the complement of this point. In the second case, the formula to be proved
can be written

GL(2,k) = B2B; UB3sB;;

since By = sBags, this follows from the preceding formula by multiplying on
the right by s.

3. DECOMPOSITION OF G INTO DOUBLE COSETS

THEOREM 1. We have G = BWB. The map w — C(w) is a bijection from
W to the set B\G/B of double cosets of G with respect to B.

It is clear that BWB is stable under  — z~!, and Lemma 1 shows that
it is stable under the product. Since it contains B and N, it is equal to G.

It remains to prove that C(w) # C(w’) if w # w'. For this, we shall prove
by induction on the integer ¢ the following assertion:

(Aq) If w and w’ are distinct elements of W such that Ig(w) > ls(w’) = g,
then C(w) # C(w').

(For the definition of Is(w), see §1, no. 1.)

This assertion is clear for ¢ = 0, since then w’ = 1 and w # 1, hence
C(w’) = B and C(w) # B.

Assume that ¢ > 1 and that w,w’ satisfy the hypotheses of (A,). There
exists s € S such that sw’ is of length ¢ — 1. We have

Is(w) > Is(sw’) (6)
hence w # sw’. Moreover, sw # sw’; by formula (3) of § 1, no. 1, we have
ls(sw) > Is(w) — 1 > Ig(sw’) = ¢ — 1. (7)

By the induction hypothesis, C(sw’) is distinct from C(w) and from C(sw);
from formula (2) it follows that

C(sw') N C(s).C(w) = . (8)
Since C(sw’) C C(s).C(w'), we have finally that C(w) # C(w').

Remark. Axiom (T4) was not used in the preceding proof.
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4. RELATIONS WITH COXETER SYSTEMS

THEOREM 2. The pair (W, S) is a Cozeter system. Moreover, for s € S and
w € W, the relations C(sw) = C(s).C(w) and ls(sw) > ls(w) are equivalent.

For any s € S, let P, be the set of elements w € W such that
C(s).C(w) = C(sw).

We are going to verify that the P, satisfy conditions (A’), (B’) and (C) of
§1, no. 7; the two assertions of the theorem will then follow from Prop. 6 of
§1, no. 7.

Condition (A’) is clear.

We verify (B'). If P, and sPs had an element w in common, we would
have w € P, and sw € P, and hence

C(s).C(w) = C(sw),  C(s).C(sw) = C(w).

It would follow that C(s).C(s).C(w) = C(w) and, by formula (5), this would
imply that C(w) = C(sw), which would contradict Th. 1.

We verify (C). Let s,s’ € S and w,w’ € W with w’ = ws’. The assumption
that w € P, and w’ ¢ P, implies that

C(sw) = C(s).C(w) (9)
C(w') c C(s).C(w') (10)
by (3).
From (9) and the relation w = w's’, it follows that
C(s)w's'B = C(sw). (11)

By formula (2'), C(w').C(s') ¢ C(w') U C(w's’), which immediately implies
that
C(w')s'B € C(ws') U C(w). (12)

Since C(w') is a union of left cosets gB and since
C(s).C(w') = C(s)w'B,

formula (10) shows that C(s)w’ meets C(w’) and a fortiori that C(s)w’s'B
meets C(w')s'B. It follows from formulas (11) and (12) that the double coset
C(sw) is equal to one of the double cosets C(ws’) and C(w); since sw # w,
Th. 1 allows us to conclude that sw = ws’.

COROLLARY 1. Let wy,...,wq € W and let w = w; ... w,. If
Is(w) = Is(w1) + -+ + Is(wy),

then
C(w) = C(wy) ... C(wg).
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On taking reduced decompositions of the w;, one is reduced to the case
of a reduced decomposition

w=351...5, withs; €8S.

If u=s5...54, then w = syu and Ig(s1u) > lg(u), so C(w) = C(s1).C(u) by
the theorem. The required formula follows from this by induction on gq.

COROLLARY 2. Let w € W and let T,, be the subset of W associated to w
by the procedure of Lemma 2 of § 1, no. 4. If t € Ty, then

C(¢) € C(w).Clw™).

If t € T, there exist by definition elements w’,w” € W and s € S such
that

w=wsw Is(w)=Isw)+Isw’)+1 and t=w'sw "

By Cor. 1,
C(w).Clw™?) = C(w').C(s).C(w").C(w"").C(s).C(w' ™).
Hence,
C(w).C(w™1) D C(w').C(s).C(s).C(w' ™).
By (4), C(s) C C(s).C(s). Hence,

C(w).C(w™1) D C(w').C(s).C(w' ™) D C(t).

COROLLARY 3. Let w € W and let H,, be the subgroup of G generated by
C(w).C(w™1). Then:

a) For any reduced decomposition (s1,...,sq) of w,
C(s;) cH, for1<j<gq

b) The group H,, contains C(w) and is generated by C(w).
We prove a) by induction on j. Assume that C(sx) is contained in H,, for
k < j. Let

t= (31 .. .Sj_l)Sj(Sl . .Sj_l)_l.

The element t belongs to the subset T,, of W defined in Lemma 2 of §1,
no. 4. By Cor. 2, C(t) C H,, and hence C(s;) C H,,.

Since C(w) = C(s1)...C(sq), cf. Cor. 1, we have C(w) C H,, and b)
follows.

Example. Th. 2, applied to the Tits system described in no. 2, shows that the
symmetric group &, with the set of transpositions of consecutive elements,
is a Cozeter group.
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5. SUBGROUPS OF G CONTAINING B

For any subset X of S, we denote by Wx the subgroup of W generated by
X (cf. §1, no. 8) and by Gx the union BWxB of the double cosets C(w),
w € Wx. We have Gg =B and Gs = G.

THEOREM 3. a) For any subset X of S, the set Gx is a subgroup of G,
generated by UXC(s).
se

b) The map X — Gx is a bijection from P(S) to the set of subgroups of
G containing B.
¢) Let (X;)ier be a family of subsets of X. If X = ﬂ X;, then Gx = ﬂ Gx, .

d) Let X and Y be two subsets of S. Then Gx C Gy (resp. Gx = Gy) if
and only if X CY (resp. X =Y).

It is clear that Gx = (Gx)_l; Lemma 1 of no. 1 shows that Gx.Gx C Gx;
and hence a) follows, taking into account Cor. 1 of Th. 2.

The injectivity of X — Gx follows from that of X — Wx (§1, no. 8,
Th. 2). Conversely, let H be a subgroup of G containing B. Let U be the set
of w € W such that C(w) C H. We have H = BUB since H is a union of
double cosets. Let X = UN'S; we show that H = Gx. Clearly, Gx C H. On
the other hand, let « € U and let (sy,...,s,) be a reduced decomposition
of u. Cor. 3 of Th. 2 implies that C(s;) C H, and hence that s; € X for
1 < j < gq. Thus, u € Wy, and since H is the union of the C(u) for u € U,
we have H C Gx, which proves b).

Assertions c) and d) follow from analogous properties of Wx (§ 1, no. 8,
Th. 2).

COROLLARY. The set S consists of the elements w € W such that w # 1
and BU C(w) is a subgroup of G.

The elements w € W such that B U C(w) is a subgroup of G are those
for which there exists X ¢ S with Wx = {1,w}. Moreover, if w # 1, we
necessarily have Card(X) =1, ie. w € S.

Remark. 1) The above corollary shows that S is determined by (G,B,N);
for this reason, we sometimes allow ourselves to say that (G,B,N) is a Tits
system, or that (B,N) is a Tits system in G.

PROPOSITION 1. Let X be a subset of S and N’ a subgroup of N whose
image in W is equal to Wx. Then, (Gx,B,N’,X) is a Tits system.

We have Gx = BWxB = BN’'B, which shows that Gx is generated by
BUN'’. The verification of the axioms (T1) to (T4) is now immediate.

PROPOSITION 2. Let X,Y C S and w € W. We have
Gx’lUGy = BW)(’LUWYB.
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Let s1,...,8 € X and t1,...,t; € Y. Lemma 1 shows that
C(Sl . sq)C(w)C(tl e. tq) C BWxwWvyB,

and hence that
GxwGy C BWxwWvyB.

The opposite inclusion is obvious.

Remark. 2) Denote by Gx\G/Gy the set of subsets of G of the form Gx¢Gy,
g € G; and define Wx\W /Wy analogously. The preceding proposition shows
that the canonical bijection w — C(w) from W to B\G/B defines by passage
to the quotient a bijection Wx\W /Wy — Gx\G/Gy.

PROPOSITION 3. Let X C S and g € G. The relation gBg~! C Gx implies
that g € Gx.

Let w € W be such that g € C(w). Since B is a subgroup of Gx, the
hypothesis gBg~! C Gx implies that C(w).C(w™!) C Gx, and hence that
C(w) C Gx by Cor. 3 of Th. 2, so g belongs to Gx.

6. PARABOLIC SUBGROUPS

DEFINITION 2. A subgroup of G is said to be parabolic if it contains a
conjugate of B.

It is clear that every subgroup that contains a parabolic subgroup is
parabolic.

PROPOSITION 4. Let P be a subgroup of G.

a) P is parabolic if and only if there exists a subset X of S such that P is
congugate to Gx (cf. no. 5 for the definition of Gx ).

b) Let X,X' C S and g,g' € G be such that P = gGxg~! = ¢'Gxg'™".
Then, X = X’ and g'g~! € P.

Assertion a) follows from Th. 3, b).

Under the hypotheses of b), we have

— -1 — —1
g '¢Bg  gC g lgGxg T =0Cx,

and Prop. 3 shows that g~'¢g’ € Gx. Hence, Gx: = Gx and X’ = X by Th. 3,

b). Finally,
99 =997 97 €gGxg7",
which proves b).

If the parabolic subgroup P is conjugate to Gx, where X C S, then P is
said to be of type X.
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THEOREM 4. (i) Let P; and Py be two parabolic subgroups of G whose
intersection is parabolic and let g € G be such that gP1g~! C Pa. Then
g e P2 andP1 C Ps.

(i) Two parabolic subgroups whose intersection is parabolic are not con-
Jjugate.

(iii) Let Q; and Q2 be two parabolic subgroups of G contained in a subgroup
Q of G. Then any g € G such that Q19 = Q2 belongs to Q.

(iv) Every parabolic subgroup is its own normaliser®.

Assertion (i) follows from Props. 3 and 4, and implies (ii). Under the
hypotheses of (iii), we have gQ;¢9~! C Q, which implies that g € Q by (i).
Finally, (iv) follows from (iii) by taking Q; = Q2 = Q.

PROPOSITION 5. Let P; and Py be two parabolic subgroups of G. Then
P1 NPy contains a conjugate of T.

By first transforming P; and P, by an inner automorphism of G, we may
assume that B C P;. Let g € G be such that gBg~! C P3. By Th. 1, there
exist n € N and b,b’ € B such that g = bnb’. Since T is normal in N,

Py D gBg ! =tmBn ™'t D bnTn bt = bTH™?

and
P; DB DO bHTH 7},

which proves the proposition.

7. SIMPLICITY THEOREMS

Lemma 2. Let H be a normal subgroup of G. There exists a subset X of S
such that BH = Gx and such that every element of X commutes with every
element of S-X.

Since BH is a subgroup of G containing B, there exists a unique subset X
of S such that BH = Gx (Th. 3).

Let s; € X and s3 € S=X; let n; and ny be representatives in N of s;
and sy, respectively. Then n; € Gx = BH and there exists b € B such that
bn; € H. Since H is normal in G, the element h = ngbniny 1 of G belongs to
H. This means that

h € C(s2).C(s1).C(s2)-

If the length of s2s;1s2 is equal to 3, Cor. 1 of Th. 2 implies that
C(s2).C(s1).C(s2) = C(s28182),

® If H is a subgroup of a group G, the normaliser of H in G is the subgroup 9(H)
consisting of the elements g of G such that gHg~! = H. A subgroup H’ is said to
normalise H if H' C 91(H), in which case HH' = H'H is a subgroup of G in which
H is normal.
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and hence that h € H N C(s28182). Since H N C(s28182) is non-empty,
828182 € Wx. As (s2,51,82) is a reduced decomposition, it follows that
so € X, contrary to our assumption.

Thus I5(s2s182) < 2; if Is(s25182) = 1, then s;52 € S and so (s182)% = 1,
or $182 = $281. If ls(s28182) = 2, property (E) of §1, no. 5 implies that
8981 = 8189, since s; # so. Q.E.D.

The following property of a group U enters into Th. 5 below:

(R) For any normal subgroup V of U distinct from U, the commutator sub-
group (cf. Algebra, Chap. I, §6, no. 8) of U/V is distinct from U/V.

Every soluble group satisfies (R); in particular, every abelian group sat-
isfies (R). It can be shown that the symmetric group &, satisfies (R) (cf.
Exerc. 29).

THEOREM 5. Let Z be the intersection of the conjugates of B, let U be a
subgroup of B and let G be the subgroup generated by the conjugates of U in
G. We make the following assumptions:

(1) U 4s normal in B and B = UT.

(2) U has property (R).

(3) Gi is equal to its commutator subgroup.

(4) The Cozeter system (W,S) is irreducible (cf. §1, no. 9).

Then every subgroup H of G normalised by G; is either contained in Z or
contains Gy.

First we show that G = G1T. The group G;T contains B and hence is
its own normaliser (Th. 4); but as N normalises G; and T, it also normalises
G1T,so N C G;T. Since G is generated by B and N, it follows that G = G; T.

Next, set

G'=GiH, B =BnG, N =NNnG,
T=TNG =B'NN and W =N/T.

We have G = G'T since G’ contains G, and hence N = N’T. The inclusion
of N’ into N thus defines, on passing to the quotient, an isomorphism « :
W' — W. Let ' = o~ 1(S).

We now show that (G',B’,N’,S') is a Tits system. Since G = BNB and
B = TU = UT, we have G = UNU. Since U is a subgroup of G/, it follows
that G’ = UN'U; since U C B/, this proves (T1). Axiom (T2) is satisfied since
a is an isomorphism. Let w € W and let w’ = o~ (w) be the corresponding
element of W’. We have

BwB = BwB’' = Bw'B’/, since B=B'T.

From this we conclude that G’ " BwB = B’w'B’, which means that the
inclusion of G’ into G defines on passing to the quotient a bijection from
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B'\G'/B’ to B\G/B. Axiom (T3) follows immediately. Axiom (T4) follows
from B = B'T.

The subgroup H is normal in G’. By Lemma 2 applied to (G, B’,N’,§'),
there exists a subset X’ of S’ such that B’'H = G%, and every element of
§'-X’ commutes with every element of X’. In view of assumption (4), there
are only two possibilities:

a) X' =g,ie. BH=B/,so HC B’ c B. If g € G, then g = gt with
91 €Gy,te T, and HC nggl_1 since G; normalises H. Thus H C gBg~!,
and since Z is the intersection of the gBg~!, we have H C Z.

b) X' = ¢/, i.e. B'H = G’. Since G = G'T, we have
G =B'HT = HB'T = HB.

As B normalises U, every conjugate of U is of the form hUh™! with h € H.
Such a subgroup is contained in the group UH, hence G; C UH by the
definition of G;. Thus, we have the isomorphisms

By assumption (3), G;/(G; N H) is equal to its commutator subgroup. As-
sumption (2) now shows that the group U/(U N H), which is isomorphic to
G1/(G1NH), reduces to the identity element. Hence G;NH = G; and G; C H,
which completes the proof.

COROLLARY. Under the assumptions of Th. 5, the group G1/(G1 N Z) is
either simple non-abelian or reduces to the identity element.

Th. 5 shows that G1/(G1NZ) is simple or reduces to the identity element.
On the other hand, assumption (3) implies that it is equal to its commutator
subgroup. Hence the corollary.

Remarks. 1) Assumptions (2), (3), (4) were not used in the proof that
(G',B/,N',§) is a Tits system.

2) Suppose that ZNU = {1}. Since Z and U are normal in B, it follows
that every element of Z commutes with every element of U, and hence with
every element of G;. In view of the preceding corollary, it follows that G1NZ
is the centre of Gy.

3) Assumption (3) is implied by the following condition:

(3") U is generated by the commutators b='u~'bu with v € U and
be BN Gi.

Ezamples. 1) Let k be a field, n an integer > 0, G = GL(n, k), and let
(G,B,N,S) be the Tits system described in no. 2. Let U be the strictly upper
triangular subgroup of G, i.e. the subgroup of B consisting of the matrices
whose diagonal entries are equal to 1. Condition (1) in Th. 5 is immediate,
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and so is (2) since U is soluble. Condition (4) is satisfied if n > 2. One can
show (cf. Algebra, Chap. II, § 10, Exerc. 13) that (3) is satisfied if n > 3 and
Card(k) > 4. Under these conditions, we conclude that G1/(G1NZ) is simple
and that G; N Z is the centre of Gy (cf. Remark 2).

When k is commutative, G; = SL(n, k) (cf. Algebra, Chap. II1, § 8, no. 9).

*2) Let g be a simple Lie algebra over C, and let G be the group of inner
automorphisms of g (cf. Chap. III, §6, no. 2, Prop. 2). By using Th. 5, one
can show that G is simple non-abelian.,



APPENDIX
GRAPHS

1. DEFINITIONS

DEFINITION 1. A combinatorial graph (or simply a graph, if there is no
risk of confusion) is a pair (A, S), where S is a set and A is a subset of P(S)
consisting of sets with two elements.

Let I' = (A,S) be a graph. The elements of A are called the edges and
those of S the wertices of I'; two vertices are said to be joined if {z,y} is an
edge. A vertex is called terminal if it is joined to at most one vertex, and a
ramification point if it is joined to at least three vertices.

In accordance with the general definitions (Sets R, §8), an isomorphism
from the graph I' to a graph I"" = (A’,S’) is a bijection from S to S’ that
takes A to A’. A graph I = (A’,S') is called a subgraph of I" if S’ C S and
A’ C A; I is called a full subgraph of I' if & € S and A’ = A NP(S). It is
clear that every subset of S is the set of vertices of exactly one full subgraph
of I'.

To make the arguments easier to follow, we represent a graph by a diagram
having points corresponding to the vertices, two points being joined by a line
if and only if the vertices they represent are joined in the graph. For example,
the diagram

od

a b :°°’

4

represents a graph whose vertices are a,b, c,d, e and whose edges are {a, b},
{b,¢}, {c,d} and {c,e}.

2. CONNECTED COMPONENTS OF A GRAPH

Let I' = (A, S) be a graph. If a and b are two vertices, a path joining a and
b is a sequence (o, ..., Tn) of vertices of I' with zo = a, z,, = b, the vertices
z; and z;;1 being joined for 0 < 7 < m; the integer n > 0 is the length of the
path. The path (zo,...,z,) is said to be injective if z; # z; if ¢ # j. If a
path (o, ..., z,) joining a and b is of minimal length among such paths, it is
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necessarily injective; for if not, there would exist ¢ and j with 0 < i< j < n
and z; = z; and then the sequence

(xo,...,$i,xj+1,...,(l}n)

would be a path of length < n joining a and b.

The relation “there exists a path joining a and b” between two vertices a
and b of I' is an equivalence relation R on the set S of vertices. The equivalence
classes of R are called the connected components of I'; and I' is said to be
connected if S has at most one connected component, that is if any two vertices
of I' can be joined by at least one path.

PROPOSITION 1. Let I' = (A,S) be a graph and (Sq)acr its family of
connected components. Denote by Iy, the full subgraph of I' having S, as its
set of vertices.

(i) For any a in L, the graph I, is connected.

(ii) If I'" = (A’,S’) is a connected subgraph of I, there exists o in L such
that I'" C I,.

(iil) If o # B, no element of S, is joined in I' to any element of Sg
(equivalently, every edge of I' is an edge of one of the I',).

(iv) Let (S)rem be a partition of S such that, if A # p, no element of S\
is joined in I" to any element of S),; then each of the sets S} is a union of
connected components of I'.

(i) Let @ be in L and a and b be in S,. Then there exists a path
¢ = (zo,...,Zn) joining a and b in I". For any ¢ with 0 < 7 < n, the path
(zo,...,x;) joins a to z; in I', so x; € S,. Thus, ¢ is a path in I, joining a
and b. It follows that I, is connected.

(ii) Let I = (A’,S’) be a non-empty connected subgraph of I, let a be
an element of S’ and let S, be the connected component of S containing a.
For any b in S’, there exists a path c joining a and b in IV, and a fortiori in
I'. It follows that S’ C S,.

(iii) Given distinct elements o and 3 of L, and vertices a € S, and b € Sg,
there is no path joining a and b, and in particular no edge joining a and b.

(iv) Let a be in S, and let S, be the connected component of I" containing
a. Then, for any b in S,, there exists a path (zg,...,z,) joining a and b in
I'. If i is an integer such that 0 <4 < n and if z; € S}, then z;4, € S}, since
x; is joined to x;41. It follows by induction that z; € S for 0 < 7 < n, and
in particular that b =z, is in S). Thus, S, C S).

COROLLARY 1. A graph I' = (A, S) is connected if and only if there does
not exist a partition (S',S”) of S into two non-empty subsets such that no
element of S’ is joined in I' to any element of S”.

Suppose that I" is not connected and let S’ be one of its connected com-
ponents. The set S” = S-S’ is non-empty by Prop. 1, (i) and no element of
S’ is joined to any element of S” by Prop. 1, (iii).
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Suppose now that I" is connected and let (S’,S”) be a partition with the
stated property. By Prop. 1, (iv), the set S’ contains at least one connected
component, so S’ = S and S” = @, a contradiction.

COROLLARY 2. A subset S’ of S is a union of connected components if and
only if no vertex belonging to S’ is joined to any vertex belonging to S=5'.

The condition is sufficient by Prop. 1, (iv). It is necessary by Prop. 1,

(ii).
3. FORESTS AND TREES

Let I' = (A, S) be a graph. A circuit of I' is a sequence

(1,5 Zn)

of distinct vertices of I such that n > 3, z; is joined to ;41 for 1 < i <n
and z,, is joined to z;. I' is called a forest if there is no circuit in I'; every
subgraph of I" is then also a forest. A connected forest is called a tree; the
connected components of a forest are thus trees.

PROPOSITION 2. Let I' = (A, S) be a forest having only a finite number of
vertices.

(i) If " has at least one vertez, it has a terminal vertez.

(i) If I has at least two vertices, there is a partition (S',S") of its set of
vertices into two non-empty subsets such that two distinct vertices that both
belong to S’ or both belong to S” are never joined.

Suppose that I" has at least one vertex and let (zo, ..., Z,) be an injective
path of maximal length in I". The vertex g cannot be joined to a vertex y
distinet from zg,z1,...,%Z,, since otherwise there would exist an injective
path in I' of length n + 1, namely (y, zo, . . ., Z»n). The vertex zo is not joined
to any vertex z; with 2 < ¢ < n, since otherwise (zo,1,...,z;) would be a
circuit in the forest I". Thus, xg is terminal.

We shall prove (ii) by induction of the number m of vertices of I, the
case m = 2 being trivial. Suppose then that m > 3 and that assertion (ii)
is proved for graphs with m — 1 vertices. Let a be a terminal vertex of I
(cf. (i)). We apply the induction hypothesis to the full subgraph of I whose
vertices are the vertices z # a of I'. Thus, there exist two non-empty disjoint
subsets S} and S of S with S} US{ = S-{a}, and such that two distinct
vertices in S} (resp. S{) are never joined. Since a is joined to at most one
vertex of I', we can suppose for example that it is not joined to any vertex
in 8. The partition (S}, S} U{a}) then has the required property. Q.E.D.
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For any integer n > 1, denote by A,, the graph whose vertices are the
integers 1,2,...,n and whose edges are the pairs {4, j} with 1 — j = +1:

1 2 3 n—1 n

A graph I is said to be a chain of length m > 0 if it is isomorphic to A,,41.
This is equivalent to the existence in I' of an injective path (zo,...,Zm)
containing all the vertices, the vertices z; and z; not being joined if |i—j| > 1.

PROPOSITION 3. A graph is a chain if and only if its number of vertices is
finite and non-zero and it is a tree with no ramification point.

Suppose that the graph I is a chain (o, . . . , £, ) with the properties listed
before the statement of Prop. 3. It is clear that any vertex of I' is joined to
at most two vertices. If 4 < j the path (z;,...,z;) extracted from the path
(%o, ..., Zm) joins z; to z;; thus, I" is connected. Finally, let (zp,,...,Zp,) be
a circuit in I', and let py be the smallest of the distinct integers pi,...,Pn.
There exist distinct indices ¢ and j such that z,, is joined to zp, and z,,:
this follows from the definition of a circuit. Since px < p; and px < pj;, we
necessarily have p; = p; = pg + 1, which is a contradiction since p1,...,pn
are distinct. Thus, there is no circuit in I'.

Conversely, let I' be a tree with no ramification point and with a finite
non-zero number of vertices, and let (zo,...,Z,) be an injective path of
maximal length in I'. Denote by T the set of vertices other than xg,...,Zp.
A vertex b € T cannot be joined to any vertex x;, for we would have either

a) i =0, but then (b, zog,...,Zn) would be an injective path of length m +1
in I', or

b) i = m, but then (xo,...,Zm,b) would be an injective path of length m+1
in I', or

¢) 0 < i< m, but then z; would be joined to three distinct vertices z;_1,
Ti+1 and b.

Since I' is connected, T is empty by Cor. 1 of Prop. 1. Moreover, if
there were ¢,j with j —¢ > 1 and x;,x; joined, there would be a circuit
(®i, ®it1,...,2;) in I'. Thus, I' is a chain. Q.E.D.



EXERCISES

§1

1) a) Let (W, S) be a Coxeter system and let s, ..., s, be elements of S. Put
W = s1...5,. Show that if Is(w) < r, there exist two integers p and ¢ with
1 <p<q<rsuchthat w = 81...8p-18p41-..Sg—18g+1 - - - Sr. Show that
there is a strictly increasing sequence of integers j(1), ..., j(k) between 1 and
7 such that (sjq),...,8;j(k)) is a reduced decomposition of w.

b) Let (W, S) be a Coxeter system and X, Y, Z three subsets of S. Show that
Wx N (Wywz) = (WX n Wy)(Wx n Wz)
(show that every element w € Wy.Wy has a reduced decomposition

(31,...,8h,t1,...,tk)

such that s; € Y and ¢; € Z and use Cor. 1 of Prop. 7 of no. 8).
Show that

Wx.(WY n Wz) = (Wx.Wy) n (Wx.Wz).

2) Let (W,S) be a Coxeter system and X a subset of S. Show that Wx is
normal in W if and only if every element of X commutes with every element

of S-X.

3) Let (W,S) be a Coxeter system and X,Y two subsets of S. Let a € W.
Show that there exists a unique element w € WxaWy of minimal length and
that every element

w € WxaWy

can be written in the form w’' = zwy, with x € Wx,y € Wy and I(w') =
l(z) + l(w) + I(y) (take an element of minimal length in WxaWy and use
Exerc. 1). An element w € W is said to be (X, Y)-reduced if it is the element
of minimal length in the double coset WxaWy.

Show that if w is (X, @)-reduced then I(zw) = I(z) +I(w) for all z € Wx,
and that every element of W can be written uniquely in the form zw where
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z € Wx and w is (X, @)-reduced. Show that an element w € W is (X, @)-
reduced if and only if [(zw) > I(w) for all x € X (write w in the form yw’,
where y € Wx and v’ is (X, @)-reduced).

Show that w € W is (X, Y)-reduced if and only if w is both (X, @)-reduced
and (&,Y)-reduced.

4) Let n be an integer > 2. For any integer ¢ with 1 < ¢ < n — 1, denote
by s; the transposition of ¢ and 7 + 1 in the set {1,2,...,n}, and by H; the
set of w € &, such that w=!(i) <w=*(i +1); put S = {s1,...,8n—1}. Show
that (&,,S) is a Coxeter system and that H; is the set of w € &,, such that
l(w) < I(s;jw) (use Prop. 6 of no. 7).

5) Let X be a non-empty set and W a set of permutations of X. Assume
given a set R of equivalence relations on X, an element xq € X and a map
¢ : H— sy from R to W. Denote by Ry the set of H € R such that
su(zo) = zo mod. H' for all H' # H in R, and by Sy the set of sy for H in
Ro. We make the following assumptions:

(i) For any H € R, there are two equivalence classes modulo H that are
permuted by sy and s = 1.

(ii) For all H € R and all w € W, the transform w(H) of H by w is an

equivalence relation belonging to R and s,,m) = wsgw L.

(iii) For any w # 1 in W, the set of H € R such that w(zo) # o mod. H is
finite and meets Ry.

a) Prove that (W, Sy) is a Coxeter system (use Prop. 6 of no. 7).

b) Prove that the length Is,(w) is equal to the number of elements H € R
such that
w(zo) #Z zo mod. H.

¢) Let E be a finite set and X the set of total order relations on X. Denote by
W the group of permutations of E, acting in the obvious way on E. Let ¢ and j
be distinct elements of E; say that two elements R and R’ of X are equivalent
mod. H;; if either R(4,5) and R’(3, j) or R(j,¢) and R'(j,); and denote the
transposition of ¢ and j by s;;. Let R be the set of equivalence relations of
the form H;; and ¢ the map from R to W defined by ¢(H;;) = s;;; finally let
Zo be an arbitrary element of X. Show that the objects thus defined satisfy
assumptions (i) to (iii), and recover the results of Exerc. 4.

6) Let E be a set with 6 elements and F the set of structures of the projective
line over the field F5 on E. Denote by &g the group of permutations of E;
for any o € G denote by & the permutation of F induced by o by transport
of structure. Show that there exists a bijection u from E to F, and that the
map o — u~'Gu is an outer automorphism of &g (if s is a transposition,
u~15u has three orbits of two elements).
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7) Construct a group W and two subsets S and S’ of W such that (W, S) and
(W, S’) are isomorphic Coxeter systems, but such that there exists no inner
automorphism of W transforming S to S’ (use Exerc. 4 and Exerc. 6).

8) Construct a group W and two subsets S and S’ of W such that (W, S) and
(W,8’) are non-isomorphic Coxeter systems, one of them being irreducible
and the other not (for W take a dihedral group of order 12 generated by
{s,5'} where s and s are of order 2 and s # s/, and put S = {s,s'} and
8 = {(s5')%, &,/ (55')2]).

9) Let (W,S) be a Coxeter system with matrix (m(s,s’)), and let W+ be
the subgroup of W consisting of the elements of even length. Let so € S. Put

m(s,so)

9gs = $so. Show that the family (gs)ses—{s,} and the relations gs =1 for
m(s, sg) # oo and (gsgs_,l)m(s’sl) =1 for s,s’ € S={s0} and m(s,s’) # oo,
form a presentation of W*. (Let H* be the group defined by the above
presentation. Show that there exists an automorphism « of H*, with square
the identity, that transforms g, to g;! for all s € S={so}. If H, is the
semi-direct product of {1, —1} and H*, relative to a, define mutually inverse
homomorphisms H, — W and W — H,.) Show that if the elements of S
are conjugate (cf. Prop. 3), the group W+ is the commutator subgroup of W
(remark that the elements g, are then commutators).

10) Let i, be the alternating group consisting of the permutations w € &,
whose signature is equal to +1. Show that {l,, is the commutator subgroup
of &, (use Exerc. 4 and 9). For any integer i with 1 < i < n — 2, put
U; = $;5;+1 (in the notation of Exerc. 4). Show that the family (u;) and the
relations u$ = 1, u? = 1 for i > 2, (wui41)® = 1 for 1 < i < n—3, and
uu; =uju; for 1 <i<n—4andi+2<j<n—2, form a presentation of
the group 4, (use Exerc. 9).

*11) Let (W,S) be a Coxeter system. Let I's, be the graph whose set of
vertices is S, two vertices s, s’ being joined by an edge if and only if m(s, s’) #
0. Let S, be the connected components of I',,. Show that W can be identified
with the free product of the Ws_ . In particular, every w € W can be written
uniquely as a product wj ...wp with w; # 1, w; belonging to Wsai, and
a; # a;yq for 1 < i < h — 1; show that the length of w is the sum of the
lengths of the w;..

12) Let (W, S) be a Coxeter system such that m(s, s’) is even if s # s’ and
let X be a subset of S. Show that there exists a unique homomorphism fx
from W to Wx such that fx(s) = s for s € X and fx(s) = 1 for s € S-X.
Deduce that W is the semi-direct product of Wx and the kernel of fx. Show
that if X C Y C S, there exists a unique homomorphism fx,y from Wy to
Wx such that fx = Fx,y o fy and that W can be identified with a subgroup
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of the projective system thus obtained from the Wx as X runs through the
filtered set of finite subsets of S.

9 13) Let (W,S) be a Coxeter system. For s,s' € S, define the sequence
a(s, s’) by means of the following rules:

(i) if ss’ is of infinite order, a(s, s’) is the empty sequence;
(ii) if ss’ is of finite order m the sequence a(s, s') is of length m and its even
(resp. odd) numbered terms are equal to s’ (resp. s).

Denote by a(s, s’) the product of the sequence a(s, s').

a) Show that the generating set S and the relations s> = 1 and a(s,s’) =
a(s’, s) form a presentation of the group W.

b) Let ¢ be an integer > 1. Let X be the set of sequences of ¢ elements of
S and let R, be the smallest equivalence relation on X, for which sequences
of the form (A,a(s,s’),B) and (A, a(s, s),B) (where s,s' € S and A and B
are sequences of elements of S) are equivalent. Let X7 be the set of sequences
s = (s1,...,8q) such that w(s) = s;1 ... sq is of length ¢. Show that sequences
s,s’ € X7 are equivalent modulo Ry if and only if w(s) = w(s’) (argue by
induction on ¢ and apply Prop. 5 of no. 5).

c) Show that a sequence s € X; does not belong to X7 if and only if s is equiv-
alent modulo R, to a sequence in which two consecutive terms are equal. (Ar-
gue by induction on ¢ and reduce to the case of a sequence (s1, ..., 8q) which
does not belong to X7 but which is such that (si,...,5,-1) and (s2,...,58,)
belong to 2}1"_1; use Exerc. 1 to show that s1...8,—1 = s2...54 and apply

b).)

*14) Let (W, S) be a Coxeter system and let (I, f) be its Coxeter graph. Let
k be an integer > 3. If a is an edge of I', put fx(a) = f(a) if f(a) # oo
and fx(a) =k if f(a) = co. Let (W, S) be a Coxeter system whose Coxeter
graph is equal to (I, fx) (Chap. V, §4, no. 3, Cor. of Prop. 4). Show that
there exists a unique homomorphism ¢y, from W to Wy, inducing the identity
on S. Show that if k divides k', there exists a unique homomorphism ¢ i
from Wy to Wy such that ¢r = @k 0 . Show that the homomorphism
(k) from W to the projective limit of the Wy, is injective (use Exerc. 13) c)),
but in general not surjective (for example, in the case of the infinite dihedral

group)..

15)7 Let A be a set and € a subset of B(A). The elements of € are called the
chambers of A and a subset F of a chamber C is called a facet, the codimension
of F in C being the cardinal of C-F. A facet F is said to be a panel of C if
F is of codimension 1 in C. Two chambers C and C’ are said to be adjoining

7 Exercises 15 to 24, as well as Exercises 3 to 17 of §2, are hitherto unpublished
and were communicated to us by J. Tits.
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if they have a common panel F: then either C = C’ or F = CNC'. A gallery
of length n is a sequence I" = (Cy, Cy,...,C,) of n + 1 chambers such that
C; and C;4, are adjoining for 0 < i < n — 1. Then Cy and C,, are called the
ends of I'. The gallery I is called injective if C; # C;41 for 0 < ¢ < n—1 and
is called minimal if there is no gallery with the same ends and length < n.

The set A (together with €) is a building if every element of A belongs to
at least one chamber and if any two chambers are the ends of a gallery. The
distance between two chambers C and C’ is the length d(C,C’) of a minimal
gallery with ends C and C'.

A sub-building of a building A is a subset D of A such that D together
with €N P(D) is a building.

a) Show that if A is a building, a facet has the same codimension in every
chamber containing it; this allows us to speak of the codimension of a facet
and of a panel of A without reference to a particular chamber. A morphism
of a building B to A is a map f from B to A such that the restriction of f to
every chamber C of B is a bijection from C to a chamber f(C) of A. Show
that the image under f of a facet of B is a facet of the same codimension.

b) A building is called an apartment if every panel is contained in exactly
two chambers. Show that if A is an apartment, every automorphism of A
(i.e. every permutation of A preserving €) that leaves fixed all the points of a
chamber is the identity. More generally, let ¢ be an endomorphism of A and
let C be a chamber of A such that ¢(a) = a for all a € C. Let (C,Cy,...,Cy)
be a gallery of A. Show that, either the gallery (C,(Cy),...,9(Cy)) is not
injective, or ¢(a) = a for all a belonging to the union of the C;.

16) Let (W, S) be a Coxeter system. For s € S, denote by W(*) the subgroup
WS_{S} of W, by A the set of subsets of W of the form wW () for w € W and
s € S, and by € the set of subsets of A of the form C,, = {wW) | s € S} for
w € W, which we call the chambers of A (Exerc. 15).

a) Show that the map w — C,, is a bijection from W onto €.

b) Show that two distinct chambers C,, and C,- are adjoining if and only if
there exists s € S such that w’ = ws. Deduce that A (together with €) is an
apartment (Exerc. 15), which we call the apartment of (W, S). Show that the
length of a minimal gallery with ends C,, and C, is equal to Is(w™1w’).

c) Let F be the set of facets of A and let F € §. Show that there exist a unique
subset X of S and an element w € W such that wWx = ﬂ 1. Then F is said

to be of type X. Show that the codimension of F is equal to the cardinal of
X. Show that the map j : F — an is a strictly decreasing bijection (with

1€
respect to inclusion) from § to the set of subsets of W of the form wWx for

w € W and X C S. Show that every facet of type X contains a unique facet
of type Y for every Y such that X CY CS.
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d) Let W act on A be left translations and put C = C.. Show that W acts
simply-transitively® on €. Let Ci,...,C, be chambers of A. Show that the
following conditions are equivalent:

(i) the sequence I' = (Co = C,Cy,...,C,) is an injective gallery;

(ii) there exists a sequence s = (s1,...,8p) of elements of S such that C; =
t;(Cj_1) for 1 < j < n, where t; is the element of $(s) defined in no. 4,
formula (11).

Show that if these conditions are satisfied, the sequence s is unique and
Cn = 81...8,(C). Show that the gallery I" is minimal if and only if the
sequence s(I") = s is a reduced decomposition of w = s;1...sp.

e) Let T be the union of the conjugates of S. For ¢ € T, the set L; of points
of A invariant under ¢ is called the wall defined by t. Show that L; is a union
of panels and that a panel F is contained in L; if and only if j(F) is of the
form wW g,y with ¢t = wsw™!. Deduce that, for any panel F, there is a unique
element ¢ = t(F) € T such that F C L;: L, is called the support of F.

Show that if w(L;) = Ly (for w € W), then w =1 or w =¢.

f) Let w',w"” € W. Put ¢’ = w'(C),C" = w"(C) and let I' = (Cy =
C’,Cy,...,Cp, = C”) be an injective gallery with ends C’ and C”. Let t;
be the element of T defining the support wall of the panel C; N C;_; (for
1 € j € n). Show that the sequence ¥(T) = (v’ _ltjwl)1<j<n coincides
with the sequence ®(s(w’~*(I')). For ¢t € T, let n(I',t) be the number of
times w'~*tw’ appears in U(I'). Deduce from Lemma 1 of no. 4 that the
number (—1)*(I**) depends only on C’ and C” and not on I': we denote it by
n(C’, C”,t). Show that the relation n(C’,C”,t) = 1 is an equivalence relation
between C’ and C” that has two equivalence classes that are permuted by ¢.
Denote by €*(t) the equivalence class containing C and by €~ (t) the other.

Show that, for w € W and s € S, the chamber w(C) belongs to €*(s) if
and only if I(sw) > I(w).

g) Let A*(t) (resp. A=(t)) be the union of the chambers belonging to €*(t)
(resp. €= (t)) (for t € T). Show that A*(¢t) N A=(¢t) = L;. (To show that
A*(t) N A~ (t) C L, reduce to the case t € S. If a € A*(t) N A~ (t), put
a = wW®) with s € S and w being (&, S - {s})-reduced (Exerc. 3). If w(C) €
T~ (t), then I(tw) < l(w) and w = tsy...,54 with s; € S and l(w) = ¢ + 1.
Since a € A~ (t), there exists £ € W) such that wz(C) € €*(t). Then

l(twz) =1+ l(wz) =1+ l(w) + I(z),

but since twz = s;...8qz this is a contradiction. Thus, w(C) € €*(¢) and
I(tw) = 1+ l(w). If z € W) is such that I(twz) < l(wz), deduce from
Exerc. 1 that twz = wz’ with 2/ € W(®), and hence that ta = a and a € L;.)

8 Let H be a group and E a non-empty set on which H acts. H is said to act simply-
transitively on E if the map h — h.z is a bijection from H onto E for all z € E;
then E is said to be a principal homogeneous set for H.
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The subsets At (t) and A~ (t) are called the halves of A determined by
the wall L;. Two points of A are said to be on the same side (resp. strictly on
opposite sides) of L; if they belong (resp. do not both belong) to one of the
two halves. Any facet is contained in one of the halves determined by L;. If
two facets are contained in different halves, they are said to be on opposite
sides of Ly, or to be separated by L;.

h) Let w € W. Show that I(w) is equal to the number of walls separating C
and w(C).

i) Show that the map ¢ that takes the half A*(t) (resp. A~(t)) to (1,t)
(resp. (—1,t)) is a bijection from the set 9 of halves of A onto the set
R = {1,-1} x T (cf. no. 4). With the notation of Lemma 1 of no. 4, show
that p(w(M)) = Uy(e(M)) for all w € W and M € M.

17) We retain the notation of Exerc. 16 and assume that W is finite. Let
$ be the set of walls of A. To any H € ), we associate the half H of A
determined by H containing C. Show that the elements of ) can be numbered
in such a way that the map j — ﬂ H} is strictly decreasing on the interval

i<y
(1,Card($)). (Consider the family F of intersections of the sets H* ordered by
inclusion and consider a strictly decreasing sequence (Fo,...,F,) of elements

of § of maximal length. For any H € §), there exists an i such that H* D F;
fOI‘j > and H+ ;_/) F.i_lt show that F,,, = H+ n Fi—l-)

18) Let A be an apartment (Exerc. 15). A folding of A is an endomorphism 7
of A such that 72 = 7 and such that every chamber of A is the image under
7 of 0 or 2 chambers.

a) Let 7 be a folding of A and C a chamber of A such that 7(C) = C. For
any neighbouring chamber C’ of C, either 7(C') = C' or n(C') =C;ifa € C
we have 7(a) = a. Show that, if (Co = C,Cy,...,C,) is a gallery, either
m(C;) = C; for all i or (Co,7(Cy),...,m(Cy)) is not minimal (and in fact has
two consecutive equal chambers). Deduce that any minimal gallery whose
extremities are invariant under 7 is invariant under 7. If (C = Cp, C4,...,Cy,)
is a minimal gallery and if 7(C,,) # Cy,, there exists an index i with 0 <7 < n
such that 7(C;) = C; for 0 < j <4 and n(C;) # C; fori < j < m.

b) Let C; and C; be two distinct neighbouring chambers and 7, 7’ two foldings
of A. Assume that 7(Co) = C; and 7/(C;) = Co. Let C be a chamber, and
consider the following three conditions:

7(C) = C; (1)
d(C,Cy) < d(C, Ca); (2)
7 (C) # C. 3)

Show that (1) = (2) = (3) and deduce that the three conditions are
equivalent. Show that 7 (resp. ') is the unique folding of A taking Ca (resp.
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C1) to Cy (resp. C2) (assume that (2) is satisfied and let (Cy,C5,...,C, = C)
be a minimal gallery: show that 7(C’ ) is the unique chamber distinct from
7'(C}) and containing the panel «'(C; N C’,;)). Show that 7(€) and 7'(%)
form a partition of the set ¥ of chambers of A and that w(a) = 7'(a) = a
for all a € m(A) N7'(A). Show that the map from A to itself that coincides
with 7’ on 7(A) and with 7 on 7/(A) is an involutive automorphism of A. It
is called the reflection with respect to the panel C; N Cy. Show that it is the
only non-trivial automorphism of A leaving fixed all the points of C; N Cs
(use Exerc. 15 b)).

¢) Suppose that A is the apartment associated to a Coxeter system (W, S)
and retain the notation of Exerc. 16. Let C; and C, be two neighbouring
chambers and let ¢t be the element of T such that the wall L; is the support
of C; NCy. Let M; be the half of A determined by L; and containing C; (for
j =1,2). Show that the map = defined by 7(a) = a if a € M; and w(a) = t(a)
if a € M5 is a folding of A such that 7(C3) = C; and that the reflection with
respect to the panel C; N Cy is the map a — t(a).

19) Let A be an apartment. Assume that, for any two distinct neighbouring
chambers C; and Cs, there is a folding (Exerc. 18) of A taking C; to Co.
Let C be a chamber of A and (C;);c1 the family of chambers neighbouring
C and distinct from C. Denote by s; the reflection with respect to the panel
CNC; (Exerc. 18 b)). Put S = {s; | 7 € I} and denote by W the group of
automorphisms of A generated by the s;.

a) Show that, for any chamber C’, there exists w € W such that C' = w(C)
(argue by induction on d(C, C")).

b) Show that (W, S) is a Coxeter system (for ¢ € I, put
P, ={weW | w(C) Ccm(A)},

where 7; is the folding taking C; to C, and show that the assumptions of
Prop. 6 are satisfied: to prove condition (C’), remark that if w € P,, and
ws; ¢ Py, then

'lU(C) n QUSj(C) C ﬂ'i(A) n Siﬂi(A).

Since w(C) and ws;(C) are neighbouring, it follows that s; = ws;w™! (Exerc.
18 b)).)

c) Let F be a facet of the chamber C. Show that the stabilizer Wg of F
in W is generated by the s; € S such that F ¢ CNC; (let w € Wy with
ls(w) > 1 and let ¢ € I be such that w = s;w’ with I(w') = l(w) — 1; by Prop.
6, w' € Py,, hence w(C) C s;m(A), F C m;i(A) N s;mi(A) and s; € Wg). In
particular, w(C) = C if and only if w = 1.

d) Show that the map a — W, is an isomorphism from the apartment A to

the apartment associated to (W,S) (Exerc. 16), compatible with the action
of W.
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20) Let A be a building and S a set. Then A is said to be numbered by S if
one is given a map f from A to S such that, for any chamber C of A, the
restriction of f to C is a bijection from C to S. If F is a facet of A, f(F) is
called the type of F. Let A be a numbered building. An endomorphism ¢ of
A is called allowed if a and ¢(a) are of the same type for all a € A.

a) Let ¢ be an endomorphism of A. Show that, if there exists a chamber C of
A such that @ and ¢(a) are of the same type for all a € C, then ¢ is allowed.
Show that if A is an apartment and 7 is a folding of A (Exerc. 18), then 7 is
an allowed endomorphism.

b) A subset D of A is called convez if, for all a € A - D, there exists an allowed
endomorphism ¢ of A such that ¢(z) = z for all x € D and ¢(a) # a. Show
that any intersection of convex sets is convex and that, for any subset D of A,
there exists a smallest convex subset containing D: this is called the convez
hull of D and denoted by I'(D).

21) Let (W,S) be a Coxeter system and A the associated apartment (cf.
Exerc. 16, of which we retain the notation).

a) Show that there exists a unique numbering of A (called the canonical
numbering) for which the type of a facet F is that defined in Exerc. 16 c).
We shall always consider A to be equipped with this numbering.

b) Show that the allowed automorphisms of A are the operations of W.

c) Let D be a subset of A containing at least one chamber. Show that the
following conditions are equivalent:

(i) D is the intersection of the halves of A (Exerc. 16 g)) that contain D;

(ii) D is convex;

(iii) whenever two facets F; and Fy are contained in D, the convex hull of
F1 UF;, is contained in D;

(iv) whenever a chamber C; and a facet F are contained in D and (Cyy...,Cp)
is a gallery of minimal length such that F C C,,, we have C; C D for 1 < i < n.

(To show that (iii) = (iv), use Exerc. 15 b). To show that (iv) => (i), ar-
gue by contradiction. Let D’ be the intersection of the halves of A containing
D;let a € D'~ D, let Cy be a chamber contained in D and let (Cg, Cy,...,Cy)
be a gallery of minimal length such that a € C,. Then C; c D/ for all j.
Show that there exists an integer j with 0 < j < n such that C; C D and
Cj41 ¢ D. Let M (resp. M) be the half of A determined by the support wall
of the panel C;NC;1 and containing C; (resp. Cj41). Show that D ¢ M. Let
be DN(A-M) and let I = (C;,CY,...,C! ») be a gallery of smallest possible
length such that b € Cy. Then Cj, C D for 1 <k <pand C, C M. Let m be
the folding of A with 1mage M’ (Exerc 18 ¢)): then F(CJ) CJ_H and the
gallery 7(I") is not injective (Exerc. 18 a)). If I = (C;41,C5,...,C}_5,C})
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is the gallery obtained from 7(I") by suppressing one of the two equal con-
secutive chambers, the gallery (C;, Cj11,Cs, ..., C),_, C}) is minimal by the
definition of I". Deduce from (iv) that C;;; C D. Contradiction.)

22) We retain the notation of Exerc. 16 and 21.

a) Let t € T and w € W. Show that the chambers C and w(C) are separated
by the wall L; if and only if I(tw) < I{(w) (use the folding determined by the
half A*(t)).

b) Let wy € W. Show that the following conditions are equivalent:

l(wwop) = Y wo) — l(w) for all w € W; (1)
l(twy) < l(wg) forallteT; (i1)
whenever ¢ € T, the chambers C and wo(C) are separated by the wall L, (iii)

(Use Exerc. 16 h) to show that (iii) = (i).)
Show that such an element wp is unique and exists if and only if W is
finite. It is then the element of greatest length of W and is characterized by

I(swo) < l(wp) forall ses. (iv)
Moreover, wZ = 1,woSwo = S and I(wp) = Card(T).

(c) Assume that W is finite. Show that, for any chamber Cy, there exists
a unique chamber —Cq such that Cq U (—Cp) is not contained in any half
of A. Show that there exists a unique involutive automorphism ¢ of A (not
necessarily allowed such that ¢(Cy) = —Cq for any chamber Cp and that
©(L) = L for any wall L of A. We put ¢(a) = —a for a € A. If F is a facet,
the facet —F = (F) will be said to be opposed to F.

d) Let Cqy be a chamber of A and F a partition of Co. Show that the convex
hull of CoU(—F) is the half of A determined by the wall L that is the support
of F and that contains Cy.

23) We retain the notation of Exerc. 16. Let Aut(A) be the group of auto-
morphisms of the apartment A. Show that if ¢ € Aut(A), then ¢ permutes
the walls of A, and ptp~! € T for all t € T (use Exerc. 18). Deduce that W
(identified with a subgroup of Aut(A)) is normal and that Aut(A) is the semi-
direct product of the subgroup E of automorphisms preserving the chamber
C by W. Show that the action of Aut(A) on W defines an isomorphism from
E to the group of automorphisms of the Coxeter system (W, S), or to that of
the Coxeter graph of (W, S) (cf. also Exerc. 19).

24) A structured building is a building I equipped with a set {1 of sub-buildings
satisfying the following conditions:

(SB 1) The sub-buildings A € il are apartments.
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(SB 2) Any two chambers of I are contained in at least one element of L.
(SB 3) Whenever Ay, A, € 4 are such that A; N A, contains a chamber, there
exists an isomorphism from A; to A, leaving fixed the points of A; N A,.

Let (I,4) be a structured building. The elements of i are called the apart-
ments of (I, i), or simply those of 1.

a) Show that any two apartments of I are isomorphic. Let C be a chamber
of I and A an apartment of I containing C. Show that there exists a unique
endomorphism p of I (called the retraction with centre C of I onto A) such
that p(a) = a for all @ € A and that, for any apartment A’ containing C, the
restriction of p to A’ is an isomorphism from A’ to A (remark that, by (SB
2) and Exerc. 15 b), for any apartment A’ containing C, there exists a unique
isomorphism pa: of A’ leaving all the points of C fixed). Show that p? = p
and that p=!(C) = C.

b) Let A be an apartment of I, Cg a chamber and F a facet contained in A. Let
(Co,Cy,...,C,) be a gallery of smallest possible length such that F C C,.
Show that C; C A for 1 < i < n (argue by contradiction: if C; C A and
Cit1 ¢ A, consider the retraction of I onto A with centre the chamber of A
distinct from C; and containing C; N C;41).

c) Let A be an apartment of I, C a chamber of A, F a panel of C, C’ a chamber
ofTand I' = (Cq,...,Cn = C') a gallery of smallest possible length such that
F C Cy. Show that the retraction p of I onto A with centre C transforms I
into a gallery

(Co,---,Cr = p(C))

of smallest possible length such that F C Cf (consider an apartment A’
containing C’ and F and apply b) and the fact that the restriction of p to A’
is an isomorphism).

d) Let A be an apartment, C; and Cy two distinct neighbouring chambers
contained in A, C’' a chamber containing C; N Cy and distinct from C; and
Ca, and A/ an apartment containing C; and C’ (for i = 1,2). Let ¢; (resp.
¥i) be the retraction of I onto A (resp. A}) with centre C; (resp. C’) and let
pi be the restriction of ¢; o 1); to A. Let C be a chamber of A; show that if

d(C, Cl) < d(Ca 02)3

then py(a) = a for all a € C and d(C,C;) < d(C, Cs) (consider a minimal
gallery I with extremities C and C; and apply c) to show that p;(I") is
minimal; then use Exerc. 15 b)). Show that, if d(C,Cz2) < d(C,C1), then
p1(C) # C and p?(C) = p1(C) (take a minimal gallery I" with extremities C
and Cy and use c¢) to show that p;(I") is a gallery of smallest possible length
having one extremity equal to p; (C) and the other containing C;NCsz; deduce
that d(C, p1 (C1) < d(Ca, p1(C1))).
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Show that p; is a folding (Exerc. 19) of A (show that A = p;1(A) U pa(A)
and define an involutive automorphism o of A by putting o(a) = p2(a) if
a € p1(A) and o(a) = pi(a) if a € pa2(A); show that if C is a chamber
contained in p;(A), then p;*(C) = {C, p2(C)}).

e) Let I be a spacious structured building, that is to say that every panel
is contained in at least three chambers. Show that there exists a Coxeter
system (W, S), unique up to isomorphism, such that the apartments of I are
isomorphic to the apartment A associated to (W, S) (use d) and Exerc. 19)).
Let A be an apartment of I and ¢ an isomorphism from Ay to A. Show that
there exists a unique numbering of I, with values in S, such that the types of a
and ¢(a) are equal for all a € Ag (choose a chamber C of A and show, by using
b), that, if A’ and A” are two apartments of I containing C, the numberings
of A’ and A” extending that determined on C coincide on A’ N A”).

We shall say that the Coxeter system (W,S) and the numbering thus
obtained are adapted to I.

Show that the retractions introduced in a) are allowed endomorphisms.
Show that a subset of I contained in an apartment A of I is convex in I if and
only if it is convex in A (Exerc. 20).

f) We retain the notation of e) and let 2 be the set of allowed isomorphisms
from Ao to the various apartments of I. Show that, if ¢,¢ € A and if C
is a chamber and F a facet of I contained in p(Ag) N ¥ (Ag), there exists
an element w € W such that ¥~1(C) = we~!(C) and y~}(F) = wp~1(F)
(consider an isomorphism A from ¢(Ag) to ¥(Ay) leaving fixed the points of
©(Ag) N1p(Ao) and apply Exerc. 21 b) to the automorphism 1~ o Xo o~ of
Ag).

25) Let I be a set and let § be the set of finite subsets of I. For any A € §,
put £(A) = (—1)C2rd(A) Let G be an abelian group written additively, and
let ¢ and 3 be two maps from § to G. Show that the following properties are
equivalent:

o(A) = BXCJA Y(B) forall A € F; (i)
P(A) = BZCJAs(A —B)p(B) forall Aeg. (ii)

26) Let (W,S) be a Coxeter system, with S finite. For any subset H of W,
denote by H(t) the formal power series with integer coefficients defined by

H(t) = >, '),
weH

a) Assume that Card(S) = 2. Show that

W(t) = (1+t—t™—t™t)/(1 —t) if W is of finite order 2m,
W)= (1+1¢t)/(1—t) if W is infinite.
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b) Assume that W is finite. Let wo be the element of W of greatest length
(Exerc. 22) and let m = l(wp). Show that

W(t) = t"W(t™1)
(use Exerc. 22).

¢) Let X be a subset of S. Denote by Ax the set of (X, @)-reduced elements of
W (Exerc. 3) and Wx the subgroup of W generated by X. We know (Exerc. 3)
that an element w € W belongs to Ax if and only if I(zw) = l(w) + 1 for
all z € X, that every element w € W can be written uniquely in the form
w = uv with u € Wx and v € Ay, and that in that case l(w) = l(u) + I(v).
Deduce the formula

W(t) = Wx(t).Ax(2).

d) Retain the above notation and denote by Bx the set of w € Ax such that
l(sw) = I(w) — 1 for all s € S—-X. Show that

Ax(t) = xc;cs By (®).

Deduce that
Bx(t) = > e(Y=-X)Ay(t) with &(Z)= (_I)Camd(Z)
XcYcs

(use Exerc. 25).

e) Assume that W is finite and define m and wo as in b). Show that By = {wo}
and that

m_ Wi(t)
= Yzc:sE(Y) Wy (t)

(use c) and d)).
f) Assume that W is infinite. Show that By = @ and that

_ e(Y)
© Ycs Wy (t)

g) Show that the formal power series W(t) is a rational function of ¢ (use
f) and argue by induction on Card(S)). Show that this rational function
vanishes whenever ¢ is a root of unity, and that 1/W(oo) is an integer. Show
that =y € Z[[t]].
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1) Let G be a group, B and N two subgroups of G and S a subset of
W =N/(BNN). For all w € W, put C(w) = BwB. Assume that conditions
(T1) and (T2) of Def. 1 of no. 1 are satisfied, that whenever s € S and w € W
at least one of the two relations C(s).C(w) = C(sw) and C(s).C(sw) = C(w)
is satisfied, and that B U C(s) is a subgroup of G for all s € S. Show that
condition (T3) is satisfied. Moreover, if the index of B in BU C(s) is > 3,
then (G, B, N,S) is a Tits system.

2) Let G be a group, B and N two subgroups of G and S a subset of
W = N/(BNN). Let Z be a normal subgroup of G contained in B. Let B’ and
N’ be the canonical images of B and N in G’ = G/Z. Show that the canonical
map from N to N’ defines an isomorphism from W to W' = N’/(B’ N N’). Let
S’ be the image of S under this isomorphism. Show that (G',B’,N’,S') is a
Tits system if and only if (G, B, N, S) is one.

3) Let G be a group, B a subgroup of G and (C(w))yew the family of double
cosets of G with respect to B. Then B is called a Tits subgroup of G if there
exists a subset S of W such that the following conditions are satisfied:

(1) the union of the C(s) for s € S generates G;

(2) for all s € S, the set B U C(s) is a subgroup of G and the index of B in
BUC(s) is > 3;

(3) for all s € S and all w € W, there exists an element w’ € W such that
C(s).C(w) C Clw) U C(w").

From now on we assume that B is a Tits subgroup of G and that we are
given a subset S of W satisfying conditions (1), (2) and (3).

a) Show that C(s)™! = C(s) and that C(s).C(s) = BUC(s) for all s € S.
Show that, for all s € S and all w € W, there exists an element w” € W such
that C(w).C(s) C C(w) U C(w").

b) If w € W, the length of w, denoted by I(w), is the smallest integer n > 0
for which there exist s1,...,8, € S with C(w) C C(s1)...C(sp). Show that
I(w) is finite for all w € W.

Let u,v € W with {(u) < l(v) and let s € S. Show that, if C(v) C
C(u).C(s) (resp. C(v) C C(s).C(u)), then C(v) = C(u).C(s) (resp, C(v) =
C(s).C(u)) (argue by induction on the length of u. If C(v) # C(u).C(s), then
C(u).C(s) = C(u) UC(v). By using the induction hypothesis, show that there
exist t € S and w € W such that

C(u) = C(t).C(w) with Il(w)=1(u)—-1.

From the relations C(v) C C(u).C(s) = C(¢t).C(w).C(s) and C(t).C(w) =
C(u) # C(v), deduce the existence of an element w’ # w such that
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C(w") C C(w).C(s) and C(v) C C(t).C(w'), so l(w') = 1(v) —1>1(u) — 1=
l(w). The induction hypothesis now implies that

C(w') = C(w).C(s).
Moreover,
C(t).C(u).C(s) = C(t).C(¢).C(w).C(s) = C(¢).C(w).C(s) U C(w).C(s)
= C(u).C(s) UC(w') = C(u) UC(v) U C(w")
and also
C(t).C(u).C(s) = C(t).(C(u) U C(v)) D C(t).C(¢).C(w) D C(w),
which is a contradiction since w # u, v, w’.)

¢) Show that, for all w € W and all s € S, there exists a unique element,
denoted by s.w (resp, w * s), distinct from w and such that

C(s.w) C C(s).C(w) C C(w) U C(s.w)
(resp. C(w * 5) C C(w).C(s) C C(w) U C(w * 8)).

(Show by induction on I(w) that C(s).C(w) # C(w). For this, write
C(w) = C(u).C(t)
witht € S, w € W and l(w) = I(u) + 1. If C(s).C(w) = C(w), then
C(s).C(w).C(t) = C(u).C(t)

and multiplying on the right by C(t), we obtain that C(u) U C(w) =
C(s).C(u) U C(w). Since C(u) # C(s).C(u) by the induction hypothesis, we
have, by b),

C(s).C(u) = C(w),

and hence
C(u) € C(s).C(s).C(u) = C(s).C(w) = C(w),

which is absurd).

d) Let s € S. Show that the map ps : w — s.w (resp. gs : w — w * 5) is a
permutation of W and that p2 = Id (resp. ¢2 = 1d). Show that psoq; = g:ops
for all s,t € S (study the product C(s).C(w).C(t) for w € W and show that
(s.w)*xt € {w, s.w,wxt,s.(wxt)}; show that (s.w)*t ¢ {s.w, w*t} and that
if (s.w) *t = w then s.w = w*t and w = s.(w x t)).

e) Show that the group of permutations P (resp. Q) generated by the p, (resp.
gs) for s € S acts simply-transitively on W (to show that P is transitive, use
(2) and argue as in Lemma, 1 of no. 1; to show that P is simply transitive, use
d)). Deduce that W has a unique group structure such that the map p — p(e)
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(where e denotes the element of W such that B = C(e)) is an isomorphism
from P to W. The map ¢ — g¢(e) is then also an isomorphism; moreover,
saw=wxs=sw for all s €S and all w € W and C(w)~! = C(w™?).

f) Show that the pair (W,S) is a Coxeter system and generalize the results
of no. 4.

g) Let X be a subset of S and Wx the subgroup of W generated by X. Show
that the union Gx of the C(w) for w € Wx is a subgroup of G and that
Th. 3 of no. 5 is still true. Show that B is a Tits subgroup of Gx. Generalize
Props. 2 and 3 of no. 5, and Def. 2, Prop. 4 and Th. 4 of no. 6. Show that
S is the set of w € W such that B U C(w) is a subgroup of G distinct from
B. The Coxeter system (W,S) and the group W (called the Weyl group of
(G, B)) thus depend only on (G, B).

h) Let N be a subgroup of G such that BN N is normal in N and such that
the intersection with N of every double coset C(w) with respect to B is a
double coset with respect to BN N. Show that the group N/(BNN) can be
identified with W and that (G,B, N, S) is a Tits system.

4) Let (G,B,N,S) and (G/,B/,N’,S’) be two Tits systems with G = G’ and
B = B/, and with Weyl groups W and W’. Let j be the bijection from W to
W’ defined by the relation

BwB = B’j(w)B'.
Show that j is a group isomorphism between W and W’ and that j(S) = S’.

5) Let ¥ = (G,B,N,S) be a Tits system. Put T = BNN and let N be the
normaliser of N.

a) Let b € BNN. Show that bnb~'n~! € BNN for all n € N (put bn = n'b
and use Th. 1) and that b belongs to the intersection T of the conjugates
nBn~! for n € N. Show that TN N = T.

If T =T, X is said to be saturated.

b) Put N = N.T. Show that ISI is a subgroup of G containing T as a normal
subgroup and that NN B = T. Show that the injection of N into N defines
an isomorphism from the Weyl group W of X' to N/T.

¢) Show that (G,B,N,j(S)) is a saturated Tits system, which is said to be
associated to X.

6) We use the notation of no. 2 and let Ny be the subgroup of N consisting
of the matrices all of whose entries are equal to 0 or 1. Show that BN Ny =
T N No = {1} and that the canonical map j from Ng to W = N/T is an
isomorphism. Put So = j~*(S). Show that (G, B, Ny, Sp) is a Tits system and
that (G,B,N,S) is the associated saturated Tits system.
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7) Let G be a group acting on a set E. Then G is said to act doubly-transitively
on E if, whenever z,y, 2,7’ € E are such that z # y and =’ # ¢/, there exists
an element g € G such that g.x =z’ and g.y = v/'.

a) Let (G,B,N,S) be a Tits system whose Weyl group W is of order 2. Show
that G acts doubly-transitively on G/B.

b) Let G be a group acting doubly transitively on a set E. Assume that
Card(E) > 3. Let e € E and let B be the stabilizer of e. Let z € E, with
T # e, and let n € G be such that n(e) = z and n(z) = e. Let N be the
subgroup of G generated by n. Let s be the canonical image of n in N/T.
Show that (G,B,N, {s}) is a Tits system whose Weyl group is of order 2.

8) Let (G,B,N,S) be a Tits system; put T = BNN and W = N/T. Let ~(~;
be a group containing G as a normal subgroup. Assume that for all h € G,
there exists g € G such that hBA~! = gBg~! and ANh~! = gNg~1. Let B
(resp. N) be the normaliser of B (resp. N) in G; put ' = BNN, N = I'N
and T =NNB.

a) Show that G = I'G, B=T'B,’'NB=I'NG and T = (I'NB).T. The
groups 2 = I'/(I' N B), G/G and B/B are thus canonically isomorphic. If
® C 2 and if H is a subgroup of G containing I N B, we denote by $H the
union of the subsets ¢H for ¢ € &.

b) Show that T is normal in N (to show that nyn™* € N for n € N and
v € I'N'B, use Exerc. 5 a)), that NNT = T and that ’'NT = I' N B.
The injection of N (resp. I') into N thus allows W (resp. £2) to be identified
with a subgroup of W = N/T. Show that {2 normalises S and that W is the
semi-direct product of 2 and W.

c) Show that, for all s € S and all u € W,
BsBuB C (BuB) U (BsuB).

d) Show that the map u — BuB is a bijection from W to B\G/B (use Th. 1
and the fact that I" normalises B).

e) Let B be the set of pairs (@, X), where & is a subgroup of 2 and X is
a subset of X normalised by #. Put Ggx) = #Gx = BOSWxB (with the
notation of no. 5). Show that the map (@, X) — G(g x) is a bijection from B
to the set of subgroups of G containing B. Generalize assertions b) and ¢) of
Th. 3 and Prop. 2 of no. 5. 3

Show that the normaliser of G(s x) in G is the subgroup G x), where
@' is the set of elements of 2 normalizing both & and X.

f) Show that G(g,x) is a maximal subgroup of G if and only if one of the
following two conditions is satisfied:

(i) X =S and & is a maximal subgroup of {2;
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(if) @ = §2 and P acts transitively on S—X (which is non-empty).

Show that G(g x) is a maximal subgroup in the set of subgroups of G not
containing G if and only if

(iii) X # S, @ is the normaliser of X in {2 and acts transitvely on S-X.

g) Let & be a normal subgroup of 2 and put G’ = #G, B’ = #B, N’ = &N
and T = B’ N N’. Show that TV = &T and that T’ is normal in N’ if and’
only if every element of & commutes with every element of W. Show that G’
is then normal in G, that the injection of N into N’ defines an isomorphism
j from W to W = N’/T’ and that (G/,B’/,N’,S’) (with S’ = 5(S)) is a Tits
system.

9) Let (G, B, N, S) be a Tits system and X, Y, Z three subsets of S. Show that
Gx N (Gy.Gz) = (Gx n Gy).(Gx n Gz)
(use Exerc. 1 of §1 and Prop. 2 of no. 3).

10) Let G be a group and B a Tits subgroup of G. We use the notation of
Exerc. 3. For s € S, denote by G() the subgroup Ggs_{s} (Exerc. 3 g)). Let I
be the set of subsets of G of the form gG(®) (for g € G and s € S), and € the
set of subsets of I of the form C, = {gG(®) | s € S} for g € G. The C, are
called the chambers of I (§1, Exerc. 15). Let G act on I by left translations.

a) Let § be the set of facets of I (that is, the subsets of the chambers, cf.

81, Exerc. 15). Let F € §. Show that there exist a unique subset X of S and

an element g € G such that gGx = ﬂF a; F is said to be of type X. Show
ae

that F is then the set of gG(®) for s € S—X and is of codimension Card(X)

in any chamber containing it. Show that the map j : F — nFa is a strictly
a€

decreasing bijection, compatible with left translations, from § to the set of
subsets of G of the form gGx for g € G and X C S. Show that, if X C Y CS,
every facet of type X contains a unique facet of type Y.

b) Show that G acts transitively on the set € of chambers and that the
stabilizer of the chamber C, (g € G) is equal to gBg~!; the map g — Cy
thus defines a bijection from G/B to €.

c¢) Show that two chambers C, and Cy (9,9’ € G) are neighbouring (§1,
Exerc. 15) if and only if there exists s € S such that g’ € g(B UBsB).

d) Let Cy, ..., C, be chambers of I and put Cy = C.. Show that the following
conditions are equivalent:

(i) the sequence I' = (Co, Cy, ..., Cy) is an injective gallery;

(ii) there exist a sequence s = (s1,...,Sy,) of elements of S and a sequence
(b1,...,bp) of elements of B such that C; = b151b252...b;5;(Co) (where 3;
denotes a given element of the double coset stB) for1<j<n.
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Show that, if these conditions are satisfied, the sequence s is unique: it is
then called the type of I" and denoted by s(I"). Show that an injective gallery
is minimal if and only if its type is a reduced decomposition. Show that the
following conditions are satisfied:

(WI 1) For any two chambers C and C' of 1, there exists a unique element
t(C,C") of W such that the set of types of minimal galleries with extremities
C and C' is the set of reduced decompositions of t(C,C’).

(WI 2) For any chamber C, the map C' — t(C,C’) from the set of chambers
of I to W is surjective.

e) Show that two minimal galleries of the same type and with the same
extremities are identical. (Reduce to proving that, if (s1,...,8,) is a re-
duced decomposition and if by, ..., by, b],...,b, are elements of B such that
b151...b,8, € b131...b,5,B, then b;5; € b}5;B. For this, remark that if
57070, 5, ¢ B, then this element would belong to Bs;B and we would have
ba3s...b,3, € b31b'bY3, ... b5, B with b, b’ € B, contradicting Cor. 1 of Th. 2
of no. 4.)

f) Show that I equipped with € is a building, said to be associated to the
pair (G, B). Show that there exists a unique numbering (§1, Exerc. 20) of I
for which the type of a facet is that defined in a).

g) Show that I is spacious, namely that every panel of I is contained in at
least three chambers (cf. § 1, Exerc. 24). Show that the following condition is
satisfied:

(G) Given a panel ¥, a chamber C, a gallery I' = (Cy,...,Cp) such that
F C C, and of smallest possible length, and chambers C' and C" containing
F and distinct from C,,, there exists an element g € G such that g(C;) = C;
for0 < i< nandg(C')=0C".

(Reduce to the case Cg = C; let u € S be such that F is of type S- {u} and
let s be the type of I'. Show that (s,u) is a reduced decomposition. Take
h € G such that C,, = h(C); there exist b’ and b” € B such that C’' = hb'u(C)
and C"” = hb"u(C). Then use Cor. 1 of Th. 2 of no. 4 generalized to the case
of a Tits subgroup (cf. Exerc. 3 f)) to show that there exists b € B such
that bhd'uB = hb"uB; then b € hBuBu~'Bh~! C (hBR™1) U (hBuBh™1). If
b € hBuBh~!, we would have BhB C BhBuB = BhuB (loc. cit.), which is
impossible. Hence b(C,,) = C,, and e) implies that b(C;) = C; for all i.)

11) Let (W, S) be a Coxeter system and I a building numbered by S (§1,
Exerc. 20). If I = (Cy, ..., Cy) is an injective gallery, the type of I', denoted
by s(I), is the sequence (si,...,s,) of elements of S such that the panel
Ci—1NC; is of type S—{s;} (for 1 < i < n). If conditions (WI 1) and (WI 2)
of Exerc. 10 are satisfied, I is called a (W, S)-building.

Let I be a spacious (W, S)-building (cf. Exerc. 10 g)) and let G be a group
of allowed automorphisms of I satisfying the following condition:
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(Go) Given three distinct chambers C,C’ and C" containing the same panel,
there exists an element g € G such that g(C) = C and g(C') = C".

Choose a chamber C of I and denote by B the stabilizer of C in G.
a) Show that G acts transitively on the set of chambers of 1.

b) Let C' and C” be two chambers. Show that ¢(C,C’) = ¢(C,C") if and
only if there exists b € B such that C” = b(C’) (if ¢(C,C’) = t(C,C") = w,
consider a reduced decomposition s of w and a minimal gallery I (resp. I")
with extremities C and C’ (resp. C”) and of type s. Argue by induction on
l(w) using (Gop) and a)). Deduce that there exists a bijection w — B(w) from
W to B\G/B.

¢) Let F be the facet of C of type S—{s}. Show that the stabilizer of F in
G is equal to BUB(s) (if g(F) = F, then ¢t(C,g(C)) = 1 or s). Show that
B C B(s)B(s) (use (Go)).

d) Show that B is a Tits subgroup of G and that the Coxeter system of
(G, B) is canonically isomorphic to (W,S). (Let w € W and s € S be such
that lg(sw) = Ilg(w) + 1. Let g € B(w) and u € B(s); let s = (s1,...,5n)
be a reduced decomposition of w, (C = Cp,Cy,...,Cp = g(C)) a minimal
gallery of type s and choose an element §; € B(s;); show, by using (Gog), that
there exist elements b; € B such that C; = b;3; ...5;5;,(C). Put C; = u(C;_1)
and show that the gallery (C, u(C),u(Cy),...,u(C,)) is of type (s,s), and is
therefore minimal. Deduce that ug € B(sw) and that B(s)B(w) = B(sw). If
now l(sw) = l(w) — 1, put w’ = sw: then B(s)B(w') = B(w) and hence

B(s)B(w) = B(s)B(s)B(w') C B(w') U (B(s)B(w’)) = B(sw) U B(w);
finally, since B C B(s)B(s), we also have B(w’) = B(sw) C B(s)B(w).)

e) Show that there exists a unique isomorphism from the building associated
to (G, B) (Exerc. 10) to I, compatible with the action of G and taking the
canonical chamber C, to C.

12) Let (G, B, N, S) be a Tits system, W = N/(B N N) its Weyl group, I the
(W, S)-building associated to (G,B) (Exerc. 10) and C = C, the canonical
chamber of I. Let Ag be the apartment associated to the Coxeter system
(W,S) (§1, Exerc. 16). For all g € G, let ¢, be the map from Ay to I that
takes a point wW () of Ag (w € W, s € S) to the point gwG() of I.

Show that, for all g € G, the map ¢4 is an isomorphism of numbered
buildings from Ao to a subset of I that is the union of chambers gn(C,)
for n € N. Show that I, equipped with the set { of ¢4(Ao) for g € G,
is a structured building (§1, Exerc. 24) (to prove (SB 2), remark that, if
g,g" € G, there exist b,b” € B and n € N such that ¢ '¢g” = b/'nd”;
then put g = g’b'n and show that ¢’(C) and g”(C) are contained in ¢g4(Ag).
To prove (SB 3), reduce to the case of two apartments A’ = p.(Ag) and
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A" = ¢y (Ay), with b € B, and show that the map a — b(a) leaves the points
of AN A” fixed by using Prop. 2 of no. 5). Show that the Coxeter system
(W,S) and the numbering of I are adapted to (I,f) (§1, Exerc. 24 €)) and
that the set J of allowed isomorphisms from Ag to the various elements of il
is the set of ¢y for g € G.

13) We use the notation of Exerc. 24 of §1: (I,4f) is a spacious structured
building equipped with a Coxeter system (W, S) and an adapted numbering
and J is the set of allowed isomorphisms from the apartment A, associated
to (W,S) to the various apartments of (I,i). Further, let G be a group of
allowed automorphisms of I, preserving E: the group G then acts on J and
we assume that G acts transitively on J.

Denote by C a chamber of I, A an apartment of i containing C, ¢ an
allowed isomorphism from Ag to A taking the canonical chamber C. of Ay
to C, B the stabilizer of C in G and N the stabilizer of A in G.

a) Show that, if A’ and A” are two apartments belonging to i, and containing
the same chamber, there exists g € G such that g(A’) = A” and that g(a) = a
for all a € A’ N A”. Show that G acts transitively on the set of pairs (A, C)
where A € {{ and C is a chamber of A.

b) Show that the map n — ¢! on o is a surjective homomorphism from N
to W, with kernel BN N. We can thus identify N/(B N N) with W.

¢) Show that conditions (WI 1) and (WI 2) of Exerc. 10 d) are satisfied (use
the following fact: if an apartment of I contains two chambers C’ and C”, it
contains every minimal gallery with extremities C’ and C” (§ 1, Exerc. 24b))).

d) Show that condition (G) of Exerc. 10 g) (and a fortiori condition (Go) of
Exerc. 11) is satisfied (with the notation of (G), consider an apartment A’
(resp. A”) of I containing Co and C' (resp. C"); show by using Exerc. 24 b)
of §1 that I' C A” N A” and use a)).

e) Show that (G,B,N,S) is a Tits system and that (I,4() is canonically iso-
morphic to the associated numbered structured building (Exerc. 12).

14) Let (G,B,N,S) be a Tits system and (I,if) the associated numbered
structured building (Exerc. 12). Show that G, considered as a group of au-
tomorphisms of I, satisfies the conditions of Exerc. 13. With the notation of
Exerc. 12, put A = p.(Ao) and C = @.(C.); show that B is the stabilizer of
Cin G. Let N be the stabilizer of A in G; show that N/(BNN) can be iden-
tified with W and that (G, B, N, S) is the saturated Tits system associated to
(G,B,N,S) (Exerc. 5).

15) We use the hypotheses and notation of Exerc. 10. Assume moreover that
the Weyl group W of (G, B) is finite and denote by wp the longest element
of W (§1, Exerc. 22). Two chambers C and C’ are said to be opposed if
t(C,C") = wy
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a) Show that if C and C’ are opposed, so are C' and C. Show that there
exists a chamber opposed to any given chamber C. Show that the stabilizer
of a chamber C in G acts transitively on the set of chambers opposed to C.

b) Let C and C’ be two opposed chambers. Show that for all w € W, there ex-
ists a unique chamber C,, having the following property: if (s1, ..., k) (resp.
(8h,...,8})) is areduced decomposition of w (resp. of w’ = wow™?), there ex-
ists a minimal gallery (Co = C,Cy,...,C, = C’) of type (s1,...,8k, 1, - -,8})
(with n = h + k) such that C,, = Cy (use Exerc. 22 of §1 and Exerc. 10, d)
and e)). Show that C,, and C,.,, are opposed.

¢) Let 91 be the set of pairs of opposed chambers. For m = (C,C’) € M,
let A,, be the union of the chambers C, constructed above. Show that I
equipped with the set 4l of A,, for m € 9N is a structured building (§1,
Exerc. 24) and that the Coxeter system (W, S) and the numbering of I are
adapted to (I,4l); define a canonical bijection from 90 to the set denoted by
J in Exerc. 24 of § 1. We identify these two sets.

d) Let m = (C,C’) € M with C = C,, and let N be the stabilizer of A,, in
G. Show that N/(B N N) can be identified with W and that (G,B,N,S) is a
saturated Tits system (use Exerc. 13).

16) We retain the hypotheses and notation of Exerc. 15.

a) Let C and C’ be two chambers. Show that there exists a chamber C”
opposed both to C and to C’' (take C” opposed to C such that ¢(C, C') is of
greatest possible length; if t(C’, C”) # wo, there exists a neighbouring cham-
ber C; of C” such that I(¢(C’,C1)) > I(¢(C’,C")); show by using condition
(G) of Exerc. 10 that we can assume that C; ¢ A(c,cv) and that C; is then
opposed to C).

b) Let a € 4I; show that there exists a unique involutive automorphism ja (not
necessarily allowed) that takes every chamber of A to the opposed chamber
(use Exerc. 22 ¢) of §1). Let F and F’ be two facets of I; show that if F/ =
ja(F) for some A € 4 containing F and F’, then the same is true for all A € i
containing F and F’ (if F,F' € AN A’, with A, A’ € i, consider a chamber C
(resp. C') of A (resp. A’) containing F (resp. F') and an A” € 4 containing
C and C’ and use (SB 3)). Then F and F’ are said to be opposed. Show that
two facets have a common opposed facet if and only if they are of the same
type T and that a facet opposed to a facet of type T is of type woTwy 1

c) Let Ao be the apartment associated to a Coxeter system (W, S) (§ 1, Exerc.
16) and let J be the set of allowed isomorphisms from Ay to the various
elements of . If o is a half of Ag, with wall L (§ 1, Exerc. 16) and if ¢ € J,
we say that p(a) is a semi-apartment of I, with wall ¢(L). Show that (L)
then depends only on ¢(a) and not on the pair (p,a). Let D; and Dy be
two distinct semi-apartments, with the same wall L: show that there exist
@ € J and a wall Lo of Ag such that L = ¢(Lo) and that the D; are the
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images under ¢ of the two halves of Ay determined by Lo (choose a panel F
contained in L and two chambers C; and C,, one contained in D; and the
other in Dy and such that C; contains F and C, contains the panel opposed
to F in D; (which is also opposed to F in D3) and consider the apartment of
I containing C; and Cy).

17) We retain the hypotheses and notation of Exerc. 15 and 16. Choose an
element ¢ € J taking the canonical chamber C of Ay (§1, Exerc. 16) to the
canonical chamber C, of I and, as in Exerc. 15 d), denote by N the stabilizer
of the apartment ¢(Ag) € 4 in the group G. For any subset D of Ao, denote
by Bp the subgroup of G leaving fixed all the points of ¢(D): we have B = B¢
and BNN = By,.

a) Let o be a half of Ag containing C. Show that B, acts transitively on
the semi-apartments of I distinct from ¢(a) whose wall is the wall L of ¢(a)
(let X be such a semi-apartment, F a panel contained in L and C’ a chamber
of p(a) containing F; show, by using Exerc. 16 c) and Exerc. 13 a), that
there exists g € G such that g(X U ¢(a)) = ¢(Ag) and g(C’) = C’; show
that g(F) = F and deduce from Exerc. 22 c) of §1 that g € B,). Deduce
that B, acts doubly transitively on the semi-apartments with wall L and
that (Br,Ba,Br NN) is a Tits system whose Weyl group is of order 2 (cf.
Exerc. 7).

b) Let D; and D, be two convex subsets of Ag such that C € D; C D,
and that there exists a unique half a of Ay with D; C a and Dy ¢ a:
then D; = Dy Na (§1, Exerc. 21 ¢)). Show that Bp, = B,Bp, and that
B,NBp, = BNN (by considering a gallery of smallest possible length having
one extremity equal to C and the other containing a point a € Dgy-Dy,
show that there exist two neighbouring chambers C} and C) of Ag such that
C] € Dy, C)y C Dy, C, ¢ D; and Cj N C) contained in the wall L/ of a.
Put C; = ¢(C), F = ¢(C; N C%) and L = (L’). Show that the convex hull
of D, UCj} is equal to Dy. Let b € Bp,: then b(C;) = Cy, so b(F) = F and
b(C3) # C;. Deduce that the convex hull of b(Cz) UL is a semi-apartment X
distinct from ¢(a) and with wall L, and that there exists b’ € B, such that

V' (¢(Ao)) = X U p(a).
Show that b'b(a) = a for all a € p(D; U Ch) and that ¥'b € Bp,).

¢) Let (a;)1<i<q be the halves of Ag containing C, numbered so that the map

Jj— ﬂai

INAN

is strictly decreasing (cf. § 1, Exerc. 17). Show that B = B, ... B, and that
if b;, b} € B, with by...bg =10} ...b;, then b, € b;(BNN) for 1 <: < gq.

18) We use the hypotheses and notation of no. 2. Let V; be the vector sub-
space of k™ generated by ej,...,e; (for 1 <i<n—1).
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a) Show that, for any subset X of S, the subgroup Gx (no. 5) consists of the
elements g € G such that g(V;) = V; for all ¢ such that s; ¢ X.

b) Let I be the building associated to a Tits system (G,B,N,S) (Exerc. 10
and 12). Show that the map j that associates to the point gG®) of I (where
G® denotes the subgroup Ggs_{s;} of G, in other words the stabilizer of V;)
the vector subspace g(V;) is a bijection from I to the set B of vector subspaces
of k™ that are # {0} and # k", compatible with the action of G.

¢) If E is a vector space, a flag of E is a set of vector subspaces of E that is
totally ordered by inclusion. Show that elements aj, ..., ax of I belong to the
same facet of I if and only if {j(a1),...,j(ak)} is a flag of k™.

d) Show that G acts doubly-transitively on the set of 1-dimensional vector
subspaces of k™. Suppose that n > 2 and let N; be the subgroup of G gen-
erated by the element that interchanges e; and es and leaves fixed the other
e;. Show that (G, G N;) is a Tits system whose Weyl group is of order 2.

e) Assume that k is commutative. Set
G’ =SL(n,k), B =G'NB, N=G'NN and T'=N'NB =TNG".

Show that N’/T' can be identified with &,, and that (G’,B’,N’,S) is a Tits
system (argue as in no. 2).

19) Let k be a commutative field of characteristic # 2 and let Q be the
quadratic form z1z3 + 22 on k®. Show that the group SO(Q) acts doubly
transitively on the set of isotropic lines in k3. Compare the corresponding
Tits system (Exerc. 7) with that obtained in no. 2 for n = 2 (cf. Algebra
Chap. IX, §9, Exerc. 15).

20) We use the notation of no. 2, and assume that k is commutative. Consider
the following cases:

(B;) n=201+1 (with I > 1), k is of characteristic # 2 and k™ is equipped
with the quadratic form Q = z1z, + -+ - + T1Z142 + xl2+1;

(Ci) n =2l (with [ > 1) and k™ is equipped with the alternating form &
such that @(e;,e;) =0for1 <i<n,1<j<nandi< j, except when ¢ <1,
j=n+1—1, when &(e;,e;) =1;

(Dy) n = 2l (with I > 2), k is of characteristic # 2 and k™ is equipped
with the quadratic form Q = 1z, + -+ - + Z1Z141.

Denote by G; the special orthogonal group SO(Q) in cases (B;) and (Dy),
and the symplectic group Sp(®) in case (C;). Put

Bi;=G;NB, Ny=G;NN and Ty =G;NT=B; NNj.

a) Show that the action of N on the set of lines ke; defines a homomorphism
from Ny, with kernel T, onto the subgroup W; of G,,, allowing us to identify
W with N3 /T;. Show that W is the subgroup of &,, generated by
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the 0; = s;5,—; for 1 < j <l and by oy = 51551 in case (B;);
the 0; = s;5,—; for 1 < j <l and by o; = s; in case (Cp);

1<y

the o; = s;5,_; for <l and by 07 = s;_18181—18151+181 in case (D;).

b) Let S; be the set of o; for 1 < j < I. Show that (G1,B1,N1,S;) is a
Tits system (to prove that the subgroup H of G; generated by B; and N;
is the whole of Gy, argue as in Algebra, Chap. II, §10, no. 13), remarking
that H contains the lower triangular subgroup of G; and that, for any &; € k
(2 <@ < n), there exists a matrix b = (b;;) € By such that b1; = 1, by; = &
for 2 <4 < n-1and by, =&, in case (C;), and by, = 0 in cases (B;) and (D).
Then argue as in no. 2, introducing the subgroups Gy,; = G1 N (G, Gn—;)
for 1 < j <1 and the subgroup Gi, of elements of G; leaving fixed

the e; for i # I,1 + 1,1 + 2 and the subspace generated by e, e;4+1 and
e1+2 in case (By);

the e; for i # 1,1+ 1 and the plane generated by e; and e;4; in case (C;);

the e; for i <1 —1or i > 1+ 2 and the two planes generated by e;_; and
ei+1 and by e; and e; 42 in case (Dy).

Show that Gy,; can be identified, respectively, with GL(2, k), SL(2, k) or the
special orthogonal group of Exerc. 19).

*c) Show that the Coxeter graph of the group W is of type (B;), (C;) or
(Dy) in the three cases (Chap VI, §4, no. 1).,

d) Show that, for any subset X of S;, the subgroup G;x consists of the
9 € Gy such that g(V;) = V; for all ¢ such that o; ¢ X, except in case (D;)
where the same assertion is valid provided that V,_; denotes the subspace
generated by ej,...,e,—_1 and e,;1. Deduce, as in Exerc. 18 b), that there
exists a bijection j from the building associated to (Gi, B;) to the set of
totally isotropic subspaces # 0 in cases (B;) and (C;), and to the set of totally
isotropic subspaces of dimension # 0 and # r — 1 in case (D;). Show that
points a, ..., a of I belong to the same facet if and only if {j(a1),...,j(ax)}
is a flag.

21) Let A be a discrete valuation ring (Commutative Algebra, Chap. VI, §3,
no. 6), m its maximal ideal, v a generator of m and K the field of fractions
of A. Let G be the group SL(2,K), B the subgroup of G consisting of the
matrices Z Z such that a,b,d € A and ¢ € m (with ad —bc=1) and N
the subgroup consisting of the matrices belonging to G and having only one
non-zero entry in each row and column.
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a) Show that T = BN N is normal in N and that W = N/T is an infinite

dihedral group generated by the classes s and s’ of the matrices (_01 (1))

0 .
and (_7_1 g), respectively.

b) Show that (G,B,N,S) (with S = {s,s'}) is a Tits system.

¢) Let H = SL(2, A) be the subgroup of G consisting of the matrices with
coeflicients in A. Show that (H,BNH, N, {s}) is a Tits system. Compare with
Exerc. 18 e).

d) Let A be the completion of A and let G,B,N, T be the groups defined as
above but replacing A by A. Show that the injection of G into G defines an
isomorphism from the building I associated to (G, B) (Exerc. 10) to the build-
ing I associated to (G,B). Let (I,4) (resp. (,£l)) be the structured building
associated to (G,B,N) (resp. (G, B, N)) (Exerc. 12): show that j(4) C £, but
that j(U) # $1if A # A (remark that the apartments I3t (resp. i) correspond
bijectively to the conjugates of T (resp. T) by G (resp. G).

22) Let G be a group and B a subgroup of G.

a) Show that the following conditions are equivalent:

(i) BN gBg~! is of finite index in B for all g € G;

(ii) every double coset BgB with respect to B is a finite union of left cosets
with respect to B.

More precisely, show that, for all g € G, the index g, of BNgBg~! in B is

equal to the number of left cosets with respect to B contained in the double
coset BgB. Show that ggn < gggn for all g,h € G.

Assume from now on that conditions (i) and (ii) are satisfied and denote
by k a commutative ring. For ¢t € G/B (resp. t € B\G/B), denote by a; the
map from G to k defined by a¢(9) =0if g ¢ t and a;(g) =1if g€ t. Let L
(resp. H) be the k-module generated by the a; for t € G/B (resp. t € B\G/B).

b) Show that there exists a unique linear form p on L such that u(a;) = 1 for
all t € G/B.

¢) Let ¢ € L and 9 € H. Show that, for all z € G, the map

0y = @y)Y(y ')
belongs to L and that the map ¢ * ¢ :  — u(f,) belongs to L. Moreover,
if ¢ € H then ¢ * ¢ € H. Show that the map (¢, %) — ¢ * 1) makes H into
an algebra over k, having ap as its unit element, and makes L into a right
H-module.
The algebra H is called the Hecke algebra of G with respect to H and is
denoted by Hy(G,B).
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d) Show that, for ¢,t' € B\G/B,
Qg * A = ;m(t, tl; t”)atu,

where m(t,t';t") is the number of cosets with respect to B contained in
tNgt'"! for all g € ¢".

e) Let G act on L by left translations. Show that the action of H on L defines
an isomorphism from H to the commutant of the linear representation of G
on L thus obtained.

*f) Assume that G is finite and that the characteristic of k& does not divide
the order of G. Show that Hi (G, B) is absolutely semi-simple over k (Algebra,
Chap VIII, §7, no. 5) (use Maschke’s Theorem (Chap. V, Appendix) and
Prop. 3 of Algebra, Chap. VIII, §5, no. 1)..

g) Assume that G is a topological group and that B is a compact open
subgroup of G. Show that conditions (i) and (ii) are satisfied and that, when
k = R or C, the product ¢ * ¢ is simply the convolution product relative
to the right Haar measure on G, normalised by the condition u(B) =1 (cf.
Integration, Chap. VIII, §4, no. 5).

23) Let (W, S) be a Coxeter system and k a commutative ring. Suppose that
we are given, for all s € S, two elements A\; and p, of k such that Ay = Ay
and p, = puy whenever s and s’ are conjugate in W. Put E = kW) and let
{ew} be the canonical basis of E.

a) Show that E has a unique algebra structure such that, for s € S and
weW,

| esw if I(sw) > {(w)

Cs-Cuw = {)\sew + psesw if I(sw) < l(w)
(introduce the endomorphism P, of E defined by the above formulas, where
es.€y is replaced by P,s(w), and the endomorphism Qs = jP,j~!, where j
denotes the automorphism of E defined by j(e,) = €,-1; show that P;Q; =
Q¢P; for s,t € S by remarking that the conditions I(swt) = l(w) and I(sw) =
l(wt) imply that sw = wt; then argue as in Exerc. 3 €)). The module E,
equipped with this algebra structure, will be denoted by Eg((As), (1s)). Show
that E((0), (1)) is the group algebra k[W] of W (Algebra, Chap. III, § 2, no. 6).

b) Show that the family of generators (es)ses and the relations
e§=/\ses+p,s forse S

(eset)r = (etes)r
(eset)"es = (eses)"e; for s,t € S such that st is of finite odd order 2r + 1

for s,t € S such that st is of finite even order 2r

form a presentation of the algebra E (argue as in the proof of Th. 1 of no. 6
of §1).
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24) Let G be a group and B a Tits subgroup of G (Exerc. 3, of which we use
the notation). Assume that, for all s € S, the double coset C(s) is the union
of a finite number ¢, of left cosets with respect to B. We use the notation of
Exerc. 22 and put a, = ac(y) for all w € W.

a) Show that conditions (i) and (ii) of Exerc. 22 are satisfied. We can therefore
speak of the Hecke algebra Hy (G, B) (k being a commutative ring), of which
(aw)wew is a basis.

b) Let s € S and w € W. Show that as * as = (gs — 1)as + g¢s; show that if
l(sw) > l(w) then as * ay = asy-

¢) Show that the linear map from the algebra Ex((gs — 1), (gs)) associated to
the Coxeter system (W,S) (Exerc. 23) to Hi(G,B) that sends e,, to a,, for
all w € W is an isomorphism of algebras.

25) We use the notation of Exerc. 8. Assume in addition that, for all s € S,
the index ¢; of BN gBg~! in B is finite for all g € BsB.

a) Show that the pair (G, B) satisfies conditions (i) and (ii) of Exerc. 22.

b) Show that, for all v € I', the map x +— yzy~! defines an automorphism o
of the Hecke algebra Hy(G,B) and that o depends only on the class w of v
in 2=1Tr/(I'NB).

c) Let k[§2] be the group algebra of {2 and (e,,) its canonical basis. Show that
the linear map j from k[§2] ®x Hi (G, B) to Hi(G, B) defined by j(e, ® agws)
= apwwB (in the notation of Exerc. 22), for w € 2 and w € W, is bijective
and that

j_l(j(ew ® z)j(ew ®Y)) = eww ® 0u(T)y

for w,w’ € 2 and z,y € Hi(G, B).

9 26) If E is an absolutely semi-simple algebra of finite rank over a com-
mutative field k, the numerical invariant of E is the sequence of integers
(n1,...,n,) such that n; > --- > n, > 0 and that k ®; E is isomorphic, for
any algebraic closure k of k, to l;I M,,, (k).

Let V be an integral ring, K its field of fractions, ¢ a homomorphism
from V to a commutative field k, and E a V-algebra. Assume that E is a free
V-module of finite rank and put Eg = E®v k and E; = E®y K.

a) Assume that the bilinear form (x,y) — Trg,/x(zy) on Eq is non-
degenerate. Show that Ey and E; are absolutely semi-simple (cf. Algebra,
Chap IX, §2, Exerc. 1).

b) Assume that Eg and E; are absolutely semi-simple over k and K, respec-
tively. Show that Eg and E; have the same numerical invariant (reduce to the
case where k and K are algebraically closed); let (e;) be a basis of E over V and
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let (X;) be indeterminates. Show that the characteristic polynomial of the el-
ement 2_ X;e; of E; @k K[(X;)] (resp. Eo ®% k[(X;)]) is of the form P =[] P?j
[ J

(resp. Q = II_CIQZ“), where (n1,...,n,) (resp. (my,...,ms)) is the numeri-

cal invariant of E; (resp. Eg), with deg(P;) = n; (resp. deg(Qx) = my).
Show that P; € V[(X;)] and that Q = ¢(P). Deduce that there exist integers
¢jk = 0 such that

mg = chknj, and nj; = Zk:cjkmk.)
J

*27) Let (G,B,N,S) be a Tits system and let k be a commutative field. As-
sume that G is finite and that the characteristic of k divides neither the order
of G nor the order of the Weyl group W = N/(BNN). Show that the algebras
Hi(G, B) (Exerc. 22) and k(W] are absolutely semi-simple and have the same
numerical invariant, and hence are isomorphic when k is algebraically closed
(let g5 be the index of BN gBg~! in B for g € BsB, s € S. Consider the
algebra Exx)((X(gs — 1)), (1 + X(gs — 1))) constructed as in Exerc. 23 from
the Coxeter system (W,S) and the polynomial ring k[X] and use Exerc. 26
a) and b), remarking that, by Maschke’s theorem (Chap. V, Appendix), the
bilinear form Trywj/k(zy) is non-degenerate).,

28) Let G be a group, M a maximal subgroup of G and U a normal subgroup of
M, satisfying condition (R) of no. 7. Assume that G is equal to its commutator
subgroup, that it is generated by the union of the conjugates of U and that
the intersection of the conjugates of M reduces to the unit element. Show
that G is simple. (Consider a normal subgroup N of G distinct from {1};
show that G = N.M and then that G = N.U.)

29) Let H be a simple non-abelian group. Let # be an automorphism of
H of prime order p and let U be the semi-direct product of Z/pZ by H
corresponding to 8. Show that, if 6 is not an inner automorphism, the only
normal subgroups of U are {1}, H and U. Deduce that U is not soluble, but
that it satisfies condition (R) of no. 7. Apply this to show that the symmetric
group &, satisfies condition (R).






CHAPTER V
Groups Generated by Reflections

§1. HYPERPLANES, CHAMBERS AND FACETS

In this section, E denotes a real affine space of finite dimension d and T
the space of translations of E (cf. Algebra, Chap. II, §9). If a and b are two
points of E, [ab] (resp. |ab], resp. |ab]) will denote the closed segment (resp.
open segment, resp. segment open at a and closed at b) with extremities a, b.
The space T is provided with its unique separated topological vector space
topology, cf. Topological Vector Spaces, Chap. I, §2, no. 3; it is isomorphic
to R%. The space E is provided with the unique topology such that, for all
e € E, the map t — e+t from T to E is a homeomorphism.

We denote by H a locally finite set of hyperplanes of E (General Topology,
Chap. I, §1, no. 5).

1. NOTATIONS

Let H be a hyperplane of E. Recall that E—-H has two connected components,
called the open half-spaces bounded by H. Their closures are called the closed
half-spaces bounded by H. Let z,y € E. Then z and y are said to be strictly
on the same side of H if they are contained in the same open half-space
bounded by H, or equivalently, if the closed segment with extremities 2 and
y does not meet H; z and y are said to be on opposite sides of H if z belongs
to one of the open half-spaces bounded by H and y to the other. If z € E and
t € T, then x and t are said to be strictly on the same side of H if this is so
for z and h +t for all h € H.

Let A be a non-empty connected subset of E. For any hyperplane H of E
that does not meet A, Dy(A) denotes the unique open half-space bounded
by H that contains A. If 91 is a set of hyperplanes of E, none of which meet
A, put

Din(A) = Hrgm Dy(A). (1)

If A consists of a single point a, we write Dg(a) and Dy (a) instead of Dy ({a})
and D ({a}).
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2. FACETS

The set of points of E that do not belong to any hyperplane H of the set
is open since §) is locally finite. More precisely, we have the following result:

PROPOSITION 1. Let a be a point of E. There exists a connected open neigh-
bourhood of a that does not meet any hyperplane H that belongs to $ and does
not pass through a. Moreover, there exist only finitely many hyperplanes that
belong to $ and pass through a.

The set M of hyperplanes H such that H € $ and a ¢ H is locally finite
since it is contained in ). Hence, the set U of points of E that do not belong to
any of the hyperplanes of the set 2 is open. Since a € U, there is a connected
open neighbourhood of a contained in U. The remainder of the proposition
is clear.

Given two points x and y of E, denote by R{z,y} the relation

“ For any hyperplane H € §), either z € H and y € H
or z and y are strictly on the same side of H.”

Clearly, R is an equivalence relation on E.

DEFINITION 1. A facet of E relative to $ is an equivalence class of the
equivalence relation defined above.

PROPOSITION 2. The set of facets is locally finite.
This is clear since $) is locally finite.

Let F be a facet and a a point of F. A hyperplane H € $ contains F if and
only if a € H; the set § of these hyperplanes is thus finite; their intersection
is an affine subspace L of E, which we shall call the affine support of F; the
dimension of L will be called the dimension of F.

If 9 is the set of hyperplanes H € §) not containing F, then

F=LnN D . 2
HQ‘JI u(@) ®
We shall prove that the closure of F is given by
F=L Dx(a).
N HDUI u(a) 3)

It is clear that the right-hand side contains the left-hand side. Conversely,
let z € LﬂHnm Dx(a). The open segment with extremities a and z is contained
€

in L and in each of the Dy(a) for H € N, and hence in F. It follows that z is
in the closure of F, hence the formula.

PROPOSITION 3. Let F be a facet and L its affine support.
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(i) The set F is a convex open subset of the affine subspace L of E.

(ii) The closure of F is the union of F and facets of dimension strictly
smaller than that of F.

(iil) In the topological space L, the set F is the interior of its closure.

Since every open half-space and every hyperplane are convex subsets of
E, formula (2) shows that F is the intersection of a family of convex subsets,
and hence is convex. On the other hand, let a be in F, and let U be a convex
open neighbourhood of a in E that does not meet any of the hyperplanes in
the set M of H € $) such that a ¢ H. For any H € N, we thus have U C Dy/(a),
hence LNU C F, so that F is open in the topological space L.

Let b be a point of F-F, belonging to a facet F’, and let 2’ be the set of
hyperplanes H € N passing through b; put 91" = 91— 9. For any H in N,
we have b ¢ H and b € Dy(a), hence b € Dg(a) and Dy (b) = Du(a); by the
definition of a facet, we thus have

FF=Ln ) HN ) Dx(a), (4)
HeM Hen”

whereas (3) implies that

F=Ln HQW Du(a) N HQJ!" Du(a), (5)

hence F’ C F. We cannot have OV = @, for this would imply that F = F/ by

(2) and (4), contrary to the hypothesis that b ¢ F and b € F’. The support

of F' is the set L' = LmHﬂrn H; we have a € L, but a ¢ H for H in 9, so
e 7

L' # L and finally dimL’ < dim L, that is dim F/ < dim F. This proves (ii).

Let H be in MV and let D be the open half-space bounded by H and
distinct from Dy(a); we have b € HNL, and it is immediate that DN L is a
half-space of L bounded by the hyperplane H N L of L; consequently, every
neighbourhood of b in L meets DN L, and since D N L is disjoint from F by
(3), we see that the point b of F — F cannot be in the interior of F in the
topological space L. Since F is open in L, we have (iii). Q.E.D.

COROLLARY. Let F and F’' be two facets. IfF =F’, the facets F and F' are
equal.

This follows from (iii).

PROPOSITION 4. Let F be a facet, and let L be an affine subspace of E
that is the intersection of hyperplanes belonging to $; denote by N the set
of hyperplanes H € $ that do not contain L. The following conditions are
equivalent:

(i) There exists a facet F' with support L that meets F.

(i) There exists a facet F' with support L contained in F.

(ili) There exists a point  in LNF that does not belong to any of the
hyperplanes of M.
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If these conditions are satisfied, L N Dy (F) is the unique facet with support
L contained in F.

(i) = (ii): Since F is a union of facets (Prop. 3, (ii)), every facet that
meets F meets a facet contained in F, and so is equal to it.

(ii) = (iii): Every point z of F/ satisfies (iii) since every hyperplane of
$) containing = contains F’, and hence L.

(iil) = (i): Let = be a point satisfying (iii) and let F’ be the facet con-
taining z; it is clear that F/ meets F. Let H € §; then = ¢ H if H € 91 and
clearly z € H if H ¢ 91; consequently the support of F’ is the intersection of
the hyperplanes of $-I, and is equal to L.

Finally, let F/ be a facet with support L contained in F, and let x be a
point of F’; since no hyperplane of Mt C $) passes through z, Prop. 1 shows
that there exists a convex open neighbourhood U of z that does not meet
any hyperplane of N. Since z is in the closure of F, UNF # &; now N is the
set of hyperplanes H € § that do not contain F/, and for all H in 91 we have
Du(z) = Dg(U) = Dg(UNF) = Dy(F) and formula (2) implies that

F' = L N Doy (F). QED.

3. CHAMBERS

DEFINITION 2. A chamber of E relative to $ (or simply a chamber if there
is no ambiguity regarding $) is a facet of E relative to §) that is not contained
in any hyperplane belonging to 9.

Let U be the open set in E consisting of the points that do not belong to
any hyperplane of $); since a hyperplane of ) must contain any facet that it
meets, the chambers are the facets contained in U; every chamber is a convex
(hence connected) open subset of E by Prop. 3, (i); since the chambers form a
partition of U, they are exactly the connected components of U. Every convex
subset A of U is connected, and thus contained in a chamber, which is unique
if A is non-empty. It is clear that the chambers are the facets with support
E, and Prop. 3, (iii) shows that every chamber is the interior of its closure.
Finally, let C be a chamber and A a non-empty subset of C; formulas (2) and
(3) imply that

C= Hﬁ Du(A) =Ds(A), C= [] Du(A) (6)
€N
since Dy (A) = Dy(a) for all a € A.

PROPOSITION 5. Let C be a non-empty subset of E. Assume that there
exists a subset ) of H with the following properties:
a) For any H € $), there exists an open half-space Dy bounded by H such

that C= () Dg.
He$n'
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b) The set C does not meet any hyperplane belonging to H-9'.

Under these conditions, C is a chamber defined by $ in E, and Dy =
Dy(C) for allH € 5.

Properties a) and b) show that C is a convex subset of U; hence there is
a chamber C’ with C C C’. Since C C Dy, we have Dy = Dy(C) for all H in
%', hence C = Dg/(C) D Dg(C) since $' C $; we have Dgy(C) = C’ by (6),
hence C D C'. Finally therefore, C = C'.

PROPOSITION 6. Every point of E is in the closure of at least one chamber.

If E reduces to a single point, this is clear. Otherwise, let a € E and let
Hi,...,H,, be the hyperplanes of §) containing a. Since $) is locally finite,
there exists a neighbourhood V of a that does not meet any hyperplane of $
other than Hy,...,H,,. Let D be a straight line passing through a and not
contained in any of the Hy; if x € D, = # a, and zx is sufficiently close to a,
the open segment Jaz[ is contained in V and does not meet any of the H;.
Then Jaz[C U; since ]az[ is connected, it is contained in a chamber C, hence
acC.

PROPOSITION 7. Let L be an affine subspace of E and £2 a non-empty open
subset of L.

(i) There exists a point a in §2 that does not belong to any of the hyper-
planes of $ that do not contain L.

(ii) If L is a hyperplane and L & $), there exists a chamber that meets 2.

(iii) If L is a hyperplane and L € ), there ezists a point a in 2 that does
not belong to any hyperplane H # L of 5.

Denote by N the set of hyperplanes H with H € $ and L ¢ H, and by £
the set of hyperplanes of the affine space L of the form LNH with H € 91. It
is clear that £ is a locally finite set of hyperplanes in L, and Prop. 6 shows
that 2 meets a chamber I" defined by £ in L. If a is a point of I' N §2, then
a ¢ H for all H € N, hence (i).

Assume now that L is a hyperplane; any hyperplane containing L is then
equal to it, so we may distinguish two cases:

a) L ¢ $: then 9 = §, and we have a ¢ H for all H € $; thus a belongs
to a chamber defined by $) in E, hence (ii).

b) L € $: then M = §H - {L}, hence (iii).

4. WALLS AND FACES

DEFINITION 3. Let C be a chamber of E. A face of C is a facet contained in
the closure of C whose support is a hyperplane. A wall of C is a hyperplane
that is the support of a face of C.

Every wall of C belongs to $). Prop. 4 shows that a hyperplane L € § is
a wall of C if and only if C # Dg_;13(C). Moreover, every wall of C is the
support of a single face of C.
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PROPOSITION 8. Every hyperplane H belonging to $) is the wall of at least
one chamber.

By Prop. 7, (iii), there exists a point a of H that does not belong to any
hyperplane H' # H of ; by Prop. 6, there exists a chamber C such that
a € C; Prop. 4 then shows that H is a wall of C.

PROPOSITION 9. Let C be a chamber and M the set of walls of C. Then
C = Don(C) and every subset £ of § such that C = Dg(C) contains M. A
subset F of C is a facet if and only if it is a facet of E relative to the family
m.

a) Let £ be a subset of § such that C = Dg(C). Consider a hyperplane L
belonging to $ but not to £; let 9 be the set of hyperplanes H # L belonging
to $. Then £ C N, hence C = Dx(C), and L does not meet Dn(C). By
the implication (i) = (iii) in Prop. 4, the hyperplane L is not a wall of C.
Consequently, every wall of C belongs to £.

b) We assume that C = Dg(C). Let H be a hyperplane belonging to £
that is not a wall of C, and put £ = £- {H}. By the implication (iii) = (i)
in Prop. 4, the convex set Dg/(C) does not meet H, so Dg/(C) C Dy(C) and
C =Dg/(C). If § is a finite subset of £ that does not contain any wall of C,
we conclude by induction on the cardinal of § that C = Dg_z(C).

¢) Let a be a point of C; clearly, C C Dgp(a). Let o’ be a point of Do (a);
since the closed segment [aa’] is compact, the set § of hyperplanes H € $
that meet [aa'] is finite. Since a and a’ are strictly on the same side of every
wall of C, no wall of C belongs to §; by b), we have C = Dg_5(C). Since
a' € Dg_gz(a), we have a’ € C. We have therefore proved that Deg(a) C C,
which establishes the first part of the proposition.

d) To prove the last assertion of the proposition, it clearly suffices to show
that a subset F of C that is a facet of E relative to 91 is a facet of E relative
to §), or that every hyperplane H € § that meets F contains F. So let H be
a hyperplane that meets F but does not contain it. Since F is open in its
affine support, it is not completely on one side of H. It follows that C is not
completely on one side of H and hence that the hyperplane H does not belong
to 9, which completes the proof.

Remarks. 1) It follows from formula (6) and Prop. 9 that the closure of a
chamber C is the intersection of the closed half-spaces that are bounded by
a wall of C and contain C.

2) Let F be a facet whose support is a hyperplane L; we shall show that F
is a face of two chambers. Let 91 be the set of hyperplanes H # L belonging
to ; put A = Dn(F) and denote by D* and D~ the two open half-spaces
bounded by L. The set A is open and contains F C L, and since every
point of L is in the closure of D* and D~, the sets C* = A N D* and
C~ = AN D~ are non-empty; these are chambers. Moreover, the hyperplane
L meets Dy (F) = Dn(C*); Prop. 4 shows that L is a wall of C* and that
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F, which meets L N Dx(F), is a face of C*; similarly, F is a face of C™.
Finally, let C be a chamber of which F is a face, and suppose for example
that D* = D¢,(C); by Prop. 4, the set Dy (C) meets F, and hence is equal to
Dn(F), and we have

C = Dg(C) = D1(C) N Den(C) = D* N D (F) = C+.

5. INTERSECTING HYPERPLANES

Recall (Algebra, Chap. II, §9, no. 3) that two affine subspaces P and P’ of E
are said to be parallel if there exists a vector ¢ in T such that P/ =t + P. It
is clear that the relation “P and P’ are parallel” is an equivalence relation on
the set of affine subspaces of E.

Lemma 1. Any two non-parallel hyperplanes have non-empty intersection.

Let H and H' be two non-parallel hyperplanes, a € H and o’ € H’'; there
exist two hyperplanes M and M’ of the vector space T such that H=M +a
and H' = M’ +a’; since H and H' are not parallel, we have M # M’ and hence
T = M + M’; hence there exist © € M and v’ € M’ such that ' —a = u — v/,
and the point 4 + a = v’ + a’ belongs to HN H'.

Lemma 2. Let H and H' be two distinct hyperplanes of E, and f, f' two affine
functions on E such that H (resp. H') consists of the points a in E such that
f(a) =0 (resp. f'(a) =0). Finally, let L be a hyperplane of E. Assume that
one of the following hypotheses is satisfied:

a) The hyperplanes H,H' and L are parallel.

b) The hyperplanes H and H' are not parallel, and HNH' C L.

Then there exist real numbers X\, X', not both zero, such that L consists of
those points a € E at which the affine function g = \.f + N.f' vanishes.

The lemma, being trivial when L = H, we assume that there exists a point
a in L with a ¢ H. Put A = f/(a), N = —f(a) and

g=Af+N.f;

then X # 0 since a ¢ H; moreover, since H # H’, there exists b € H such
that b ¢ H', so that f(b) = 0, f/(b) # 0, and thus g(b) = —f(a).f’(b) is non-
zero. The set L; of points where the affine function g # 0 vanishes is then a
hyperplane of E; we have g(a) =0, so a € L.

a) Assume that H and H' are parallel: g and f both vanish at every point
of Ly N H, hence so does f’ since X' # 0; thus every point of L; N H belongs
to H'; but since H and H' are parallel and distinct, they are disjoint, so
Li NH = @, and Lemma 1 shows that L; is parallel to H. Since a € L and
a € L, we thus have L = L.

b) Assume that H and H' are not parallel: by Lemma 1, there is a point ¢
in HN H'; we give E the vector space structure obtained by taking c as the
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origin. Then H N H’ is a vector subspace of E of codimension 2, and since
a ¢ H, the vector subspace M of E generated by HNH' and a is a hyperplane;
since HNH’ ¢ LNL; and @ € LNL;, we have M C LNLy, hence M =L = L;.
Q.E.D.

PROPOSITION 10. Let C be a chamber, let H and H' be two walls of C, and
let L be a hyperplane meeting Dy (C) N Dy, (C). Assume that H is distinct
from H' and that one of the following conditions is satisfied:

a) The hyperplanes H,H' and L are parallel.

b) The hyperplanes H and H' are not parallel, and HNH' C L.

Then, L meets C.

Let b (resp. b') be a point of the face of C with support H (resp. H'); it is
immediate that every point of the segment [bb'] distinct from b and b’ belongs
to C.

Introduce an affine function f that vanishes at every point of H and is such
that f(z) > 0 for z in Dy (C); similarly, introduce an affine function f’ having
an analogous property with respect to H'. By applying Lemma 2, we can find
numbers A and )\’ and an affine function g having the properties stated in the
lemma. We have (A, X') # (0,0), and for every point z of LNDyx(C)NDy/ (C),
we have f(z) > 0, f'(z) > 0 and X\.f(z) + X.f'(z) = 0, so AN < 0. On the
other hand, we have g(b) = X.f'(b) and g(b’) = A.f ('), and since f(b') > 0,
f'(b) > 0, we have g(b)g(d’) < 0. The points b and b’ are thus strictly on
opposite sides of the hyperplane L, hence there exists a point ¢ of L which
belongs to [bb'], and is distinct from b and ', hence that belongs to C.

6. EXAMPLES: SIMPLICIAL CONES AND SIMPLICES

a) Let a be a point of E, and (e1,...,eq) a basis of T; every point of E can
thus be written uniquely in the form

r=a+&.e1+---+&4.eq (7)

with &1,...,€4 being real numbers. Denote by e} the affine function on E
which, at any z € E, written in the form (7), takes the value &;. Denote by
H; the hyperplane formed by those x such that e;(z) = 0, and by $ the set
of hyperplanes Hy, ..., Hg. For every subset J of the set I = {1,2,...,d}, put
H; = QJ H;; for every sequence (ej,...,&4) of numbers equal to 0, 1 or —1,

7

denote by F(e1,...,eq) the set of those € E such that e}(z) is of sign ¢;
for all ¢ in I (General Topology, Chap. 4, §3, no. 2). It is immediate that the
facets defined by ) in E are the sets F(e1,...,e4) and that these sets are
pairwise distinct; the support of F(ey,...,€q) is equal to Hj if J is the set of
1 € I such that e; = 0; in particular, the chambers are the sets of the form
F(ey,...,e4) where each of the numbers ¢; is equal to 1 or —1.

The set C = F(1,...,1) formed by those z with e}(z) > 0 for all i € I is
a chamber, called the open simplicial cone with vertex a defined by the basis
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(e1,...,eq). Its closure consists of the points z such that e(z) > 0 for all
1 € I when d > 1; otherwise, its closure is empty. For every subset J of I, let
Cjy be the set of points z of E such that e}(z) = 0 for ¢ € J and ej(z) > 0 for
1 € I-J. Then Cj is a facet with support Hy, and it is an open simplicial cone
with vertex a in the affine space Hy; moreover, C = JL&JI Cj. In particular, the

walls of C are the hyperplanes H; for 7 € I, and the face of C contained in H;
is equal to Cy;y.

None of the sets H;,H;,C,C; and F(e1,...,eq) change if we replace the
basis (e1,...,eq) by a basis (Aieq, ..., Ageq) with A; > 0 for all 4.

b) Suppose now that we are given an affinely free system of points of E,
say (ao,a1,--.,aq). We know that every point of E can be written uniquely
in the form z = £y.a9 + - -+ + £4.a4, Where &, ..., &4 are real numbers with
&o+- - -+&4 = 1 (Algebra, Chap. 2, §9, no. 3). Define affine functions fo, ..., f4,
the function f; associating to the point x, written as above, the number &;.
Denote by H; the hyperplane of E defined by f;(z) = 0 and by $ the set of
hyperplanes Hg, Hy, ..., Hg; finally, put I = {0,1,...,d}. The open simplex
with vertices ao,...,aq is the set C of points z of E such that f;(z) > 0 for
all i € I; it is one of the chambers defined by § in E. The closure of C is the
set C of points z such that f;(z) > 0 for all i € I; it is the convex envelope
of the finite set {ao,...,aq} and it is easy to see that the extreme points of
6 are agp,...,a4.

For any subset J of I distinct from I, put Hy = 'DJ H; and let Cj be the set

K3

of points z of E such that f;(z) =0 for i € J and f;(z) > 0 for ¢ € I-J. The
set C; is an open simplex in the affine space H; with vertices the points a;
for i € I-J; we have Cy = C,C = JQICJ and Cy # Cy if J # J'; moreover,

C; is a facet with support Hj. In particular, the walls of C are Hg,...,Hy
and Cy;y is the face contained in H;.

For any non-empty subset K of I, let Bk be the set of points z of E such
that fi(z) > 0 for ¢ € K and f;(z) < 0 for 7 € I-K. The sets Bk are the
chambers defined by $ in E and we have By = C. It is easy to see that C is
compact; on the other hand, if K is a subset of I distinct from I, of cardinal
D, the chamber Bk contains the sequence of points x,, defined for n > 2 by

n fori € K
filzn) = (1—pn)/(d+1—-p) foriel-K

showing that By is not relatively compact.
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§2. REFLECTIONS

In this paragraph, K denotes a commutative field, assumed not to be a char-
acteristic 2 from no. 2 onwards. We denote by V a vector space over K.

1. PSEUDO-REFLECTIONS

DEFINITION 1. An endomorphism s of the vector space V is said to be a
pseudo-reflection if 1 — s is of rank 1.

Let s be a pseudo-reflection in V, and let D be the image of 1 — s. By
definition, D is of dimension 1; thus, given a # 0 in D, there exists a non-zero
linear form a* on V such that z — s(z) = (z,a*).a for all z € V.

Conversely, given a # 0 in V and a linear form a* # 0 on V, the formula

S+ () =2 — (z,a").a (z€V) (1)

defines a pseudo-reflection s, o+; the image of 1 — s, 4+ is generated by a and
the kernel of 1 — s, 4+ is the hyperplane of V consisting of those = such that
(xz,a*) = 0. If V* is the dual of V, it is immediate that the transpose sy« o of
Saq+ is the pseudo-reflection of V* given by the formula

Sax o(z¥) = 2% — (z%,a).a* (z* € V™). (2)

If @ is a non-zero vector, a pseudo-reflection with vector a is any pseudo-
reflection s such that a belongs to the image of 1 — s. The hyperplane of
a pseudo-reflection s is the kernel of 1 — s, the set of vectors x such that
s(z) = =.

PROPOSITION 1. Let G be a group and p an irreducible linear representa-
tion of G on a vector space V; assume that there exists an element g of G
such that p(g) is a pseudo-reflection.

(i) Every endomorphism of V. commuting with p(G) is a homothety, and
p is absolutely irreducible.

(ii) Assume that V is finite dimensional. Let B be a non-zero bilinear form
on V invariant under p(G). Then B is non-degenerate, either symmetric
or skew-symmetric, and every bilinear form on V invariant under p(G) is
proportional to B.

Let u be an endomorphism of V commuting with p(G). Let g be an element
of G such that p(g) is a pseudo-reflection and let D be the image of 1 — p(g).
Since D is of dimension 1 and u(D) C D, there exists a in K such that u—a.1
vanishes on D; the kernel N of u —a.1 is then a vector subspace of V invariant
under p(G) and is non-zero as it contains Dj since p is irreducible, N = V
and u = a.1. The second part of (i) follows from the first by Algebra, Chap.
VIII, §13, no. 4, Cor. of Prop. 5.
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Let N (resp. N’) be the subspace of V consisting of those x such that
B(z,y) = 0 (resp. B(y,z) = 0) for all y in V; since B is invariant under p(G),
the subspaces N and N’ of V are stable under p(G) and distinct from V since
B # 0. Since p is irreducible, N = N’ = 0 and B is non-degenerate.

Since V is finite dimensional, every bilinear form on V is given by the
formula

Bl(m>y) = B(u(a:),y) (3)

for some endomorphism u of V. If B’ is invariant under p(G), the endomor-
phism u commutes with p(G). Indeed, let z,y be in V and let g be in G; since
B and B’ are invariant under p(G), we have

B(u(p(g)(x)),y) = B'(p(9)(z),y) = B'(z, p(g™") ()
= B(u(z), p(g7") () = B(p(g) (u(z)),¥),

hence u(p(g)(z)) = p(g)(u(z)) since B is non-degenerate. By (i), there exists
o in K with u = @.1, so B’ = a.B.

In particular, we can apply this to the bilinear form B’(z,y) = B(y, z);
then B(y,z) = a.B(z,y) = o?.B(y,z) for all z,y in V, and since B is non-
zero we have o? = 1, hence o = 1 or o = —1. Thus, B is either symmetric or
skew-symmetric.

2. REFLECTIONS

Recall that from now on, unless stated otherwise, the field K is assumed to
be of characteristic different from 2. A reflection in V is a pseudo-reflection
s such that s? = 1; if s is a reflection, we denote by V& the kernel of s — 1
and by V; that of s + 1.

PROPOSITION 2. Let s be an endomorphism of V.

(i) If s is a reflection, V is the direct sum of the hyperplane VI and the
line V.

(ii) Conversely, assume that V is the direct sum of a hyperplane H and a
line D such that s(z) = z and s(y) = —y forz € H and y € D. Then s is a
reflection and H=V}, D = V. Finally, D is the image of 1 — s.

(i) If s is a reflection, V{ is a hyperplane. If z belongs to VI NV}, then
z = s(z) = —z, so x = 0 since K is of characteristic # 2. Finally, for z in V,
the vector 2’ = s(z) + z (resp. 2"’ = s(z) — z) belongs to V} (resp. V) since
s?=1, and 2z = 2’ — 2”. Thus V is the direct sum of V} and V;, and V;
is necessarily of dimension 1 since V{ is a hyperplane.

(ii) Under the stated hypotheses, every element of V can be written
uniquely in the form v = z+y with z € H and y € D and we have s(v) = z—y;
assertion (ii) follows immediately from this.
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COROLLARY. IfV is finite dimensional, every reflection is of determinant
—1.

Let s be a reflection in V. Prop. 2, (i) shows that there exists a basis
(e1,...,en) of V such that s(e;) =ey,...,8(en—1) = en—1 and s(e,) = —en,
hence det(s) = —1.

PROPOSITION 3. Let s be a reflection in V.
(i) A subspace V' of V is stable under s if and only if V; C V' or V' C V.
(i) An endomorphism u of V. commutes with s if and only if V{ and V;
are stable under u.

(i) X V/ C VI, then s(z) = z for all z in V', so s(V’) C V. Assume that
V, C V/; then, for any z in V', s(z) — 2 € V; C V’, hence s(z) € V’; thus
s(V') C V'. Conversely, assume that s(V’) C V'; if V/ ¢ VI, there exists =
in V/ with s(z) # z; the non-zero vector a = s(z) — z belongs to the line V,
and hence generates this space; since a € V', we have V; C V.

(ii) Assume first that u commutes with s. If z is a vector such that s(z) =
e.x (where ¢ = %1), then s(u(z)) = u(s(z)) = e.u(z), so VI and V; are
stable under u. Conversely, assume that VI and V; are stable under u; it is
clear that us — su vanishes on VI and on V;, and since V is the direct sum
of V{ and V;, we have us — su = 0.

COROLLARY. Two distinct reflections s and u commute if and only if
V; cVHand Vy c V.

If V; ¢ Vi and V; C V, Prop. 3, (i) shows that V" and V are stable
under s, hence su = us by Prop. 3, (ii).

Conversely, if su = us, the subspace V; is stable under u by (ii); by (i),
there are two possible cases:

a) We have V;; C V;: since they are both of dimension 1, these spaces
are therefore equal, hence V; ¢ VI; since VI is stable under s, we have
Vi € VI and so these two hyperplanes are equal. But then s = u, contrary
to our assumptions.

b) We have V; C Vi the image of 1— s is thus contained in the kernel of
1—u,s0 (1—u).(1—s) = 0. Since s and u commute, we have (1—s).(1—u) =0,
in other words V;; C V.

Remark. Let a # 0 be in V and let a* be a non-zero linear form on V: it
follows from formula (1) that

Sg,a* (IL') =T+ ((aaa*> - 2)(a:,a*).a

and hence that s, o+ ts a reflection if and only if (a,a*) = 2. In this case, we
have sq4,4+(a) = —a.
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3. ORTHOGONAL REFLECTIONS

Assume that V is finite dimensional. Let B be a non-degenerate bilinear
form on V. By Algebra, Chap. IX, §6, no. 3, Prop. 4, B is invariant under a
reflection s in V if and only if the subspaces V} and V of V are orthogonal
with respect to B; they are then non-isotropic. Moreover, for any non-isotropic
hyperplane H in V, there is a unique reflection s that preserves B and induces
the identity on H; this is the symmetry with respect to H, cf. Algebra, Chap.
IX, §6, no. 3. If a is a non-zero vector orthogonal to H, we have B(a,a) # 0
and the reflection s is given by the formula

B(z,a)
B(a,a)

by Algebra, Chap. IX, §6, no. 4, formula (6). The reflection s is also called
the orthogonal reflection with respect to H.

PROPOSITION 4. Assume that V is finite dimensional. Let B be a non-
degenerate symmetric bilinear form on V, X a subspace of V and X° the
orthogonal complement of X with respect to B; finally, let s be the orthogonal
reflection with respect to a non-isotropic hyperplane H of V. The following
conditions are equivalent:

s(zy=z—-2 .a forany z €V, (4)

(1) X is stable under s.
(i) XO is stable under s.
(i) H contains X or X°.

We have VI = H, and by what we have said, V is the orthogonal
complement HC of H with respect to B. By Prop. 3, X is stable under s if and
only if X C H or H® C X; but the relation H® C X is equivalent to X° C H by
Algebra, Chap. IX, §1, no. 6, Cor. 1 to Prop. 4. This proves the equivalence
of (i) and (iii); that of (ii) and (iii) follows by interchanging the roles of X
and X°, since (X%)? = X.

4. ORTHOGONAL REFLECTIONS IN A EUCLIDEAN
AFFINE SPACE

We retain the notation of the preceding number, and let E be an affine space
of which V is the space of translations. Giving the form B on V provides E
with the structure of a euclidean space (Algebra, Chap. IX, §6, no. 6).

Let H be a non-isotropic hyperplane of E. The symmetry with respect
to H (Algebra, Chap. IX, §6, no. 6) is also called the orthogonal reflection
with respect to H; we often denote it by sy. We have s = 1 and sy is the
unique displacement (loc. cit., Def. 3) of E, distinct from the identity and
leaving fixed the elements of H. The automorphism of V associated to sy
is the orthogonal reflection with respect to the direction of H (which is a
non-isotropic hyperplane of V).
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Every z in E can be written uniquely in the form = h + v, with h € H
and v € V orthogonal to H; we have

su(h+v)=h—wv.

PROPOSITION 5. Let H and H' be two parallel, non-isotropic hyperplanes
of E. There exists a unique vector v € V orthogonal to H and such that
H' = H + v. The displacement sg:sy is the translation by the vector 2v.

The existence and uniqueness of v are immediate. The automorphism of
V associated to sgssy is the identity; thus spyssy is a translation. On the
other hand, let a € H'; then a — v € H and

swsu(a—v) =sw(a—v)=a+v=(a—v)+2v,

showing that syssy is the translation by the vector 2v.

COROLLARY. Let H and H' be two distinct, parallel, non-isotropic hyper-
planes. If K is of characteristic zero (resp. p > 0, with p # 2), the group
of displacements of E generated by sy and sy is an infinite dihedral group
(resp. a dihedral group of order 2p).

Indeed, by Prop. 2 of Chap. IV, §1, no. 2, it suffices to show that sy’ sy
is of infinite order (resp. order 2p), which is clear.

Remark. We retain the notation of Prop. 5 and assume in addition that
K = R. Put s = sy and s’ = sy. Let H, be the hyperplane H + n.v
and let C,, be the set of points of E of the form a + £.v with a € H and
n < & < n+ 1. The C, are connected open sets forming a partition of
E—EJH,,. They are therefore the chambers defined by the system $ =

(Hp)nez in E. The translation (s's)™ transforms the chamber C = Cy into
the chamber Cs,, and since s(Cy) = C_1, we have (s's)"s(C) = Cap—1. It
follows that the dihedral group W generated by s and s’ permutes the cham-
bers C,, simply-transitively. Moreover, as we shall now show, if the chambers
C and w(C) are on opposite sides of H (for w € W), we have l(sw) = [(w)—1
(the lengths being taken with respect to S = {s,s'} (Chap. IV, §1, no. 1)).
Indeed, we then have w(C) = C,, for some n < 0. If n = —2k, then w = (ss')*
and sw = (s's)*71s’, so I(w) = 2k and I(sw) = 2k — 1 (Chap. IV, §1, no. 2,
Remark). If n = —2k — 1, then w = (ss’)*s and sw = (s's)*, so l(w) = 2k +1
and I(sw) = 2k.

5. COMPLEMENTS ON PLANE ROTATIONS

In this no., V denotes a real vector space of dimension 2, provided with a
scalar product (that is, a non-degenerate, positive, symmetric bilinear form)
and an orientation. The measures of angles will be taken with respect to the
base 27; the principal measure of an angle between half-lines (resp. lines)
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is thus a real number 6 such that 0 < 6 < 27 (resp. 0 < § < 7) (General
Topology, Chap. VIII, § 2, no. 3 and no. 6). By abuse of language, for any real
number 0, we shall use 6 to denote an angle whose measure is § and denote
by pe the rotation with angle 6 (Algebra, Chap. IX, §10, no. 3).

PROPOSITION 6. Let s be the orthogonal reflection with respect to a line D
of V. If A and A’ are two half-lines starting at the origin (resp. two lines
passing through the origin) of V, we have

(s(A,s(A") = = (A, &) (mod. 21) (resp. (mod. )).

Let u be a rotation transforming A into A’. Since su is an orthogonal
transformation of V of determinant —1, it is a reflection and thus (su)? = 1.
Consequently, u~! = sus™! transforms s(A) into s(A’), hence the proposi-
tion.

COROLLARY. Let D and D’ be two lines of V and let 8 be a measure of the
angle (D/,]\)’) Then sprSp = pog-

We know that sprsp is a rotation since it is of determinant 1. Let A and
A’ be two half-lines starting at the origin carried by D and D’. We have

(A,sl;s\D(A)) = (A,S/DT(A)) = (A/,Z’) + (A',S/D\'(A))
= (A, A) + (sp/ (A7), sp(A))

—
!
)

= (A, A") — (A7, A) = 2(A, A")  (mod. 2r),
hence the corollary.

Now let A and A’ be two half-lines of V such that
A#A and A#-A,

and let s and s’ be the orthogonal reflections with respect to the lines lzgnd
D’ containing A and A’. Let 6 be the principal measure of the angle (D, D’).
If 6 € 7Q, denote by m the smallest integer > 1 such that mf € =nZ. If
0 ¢ 7Q, put m = co. Let W be the group generated by s and s'.

PROPOSITION 7. The group W is dihedral (Chap. IV, §1, no. 2) of order
2m. It consists of the rotations peng and the products psngs for n € Z. The
transforms of D and D' by the elements of W are the transforms of D by the
rotations pne for n € Z.

The Corollary to Prop. 6 shows that s's is of order m, which gives the
first assertion. The elements of W are thus of the form (s's)™ = pange or
(8'8)™s = pangs; the last assertion follows from this, since D’ = pg(D).

COROLLARY. Let C be the open angular sector formed by the union of the
open half-lines A, starting at the origin and such that 0 < (A, A1) < 0. Then
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no transform of D or D’ by an element of W meets C if and only if m is
finite and
6 =m/m.

If m = oo, the image of the set nd (n € Z) is dense in R/27Z (General
Topology, Chap. VII, §1, Prop. 11); the union of the transforms of D by the
elements of W is thus dense in V and meets C. If m is finite and if § = kx/m
with 1 < k < m, the integers k and m being reLa\tively prime, there exists an
integer h such that hk = 1 mod. m; then (D, ppe(D)) = 7/m (mod. 7), and
pno(D) meets C. This shows that the condition is necessary. The converse is
immediate.

Remark. Assume that m is finite and that 8 = n/m. If n € Z, let C,, be the
union of the open half-lines A; starting at 0 such that

n < (A, Ay) < (n+1)8.

The C,, for —m < n < m are connected open subsets forming a partition of
E-UD, (where D, = png(D)). These are therefore the chambers determined
n

in E by the system of m lines D, (1 < n < m). We have Cao, = pore(C) and
Cok—1 = p2res(C). Moreover, C,, = C if and only if n € 2mZ. Consequently,
the group W permutes the chambers C,, simply-transitively.

We show finally that, if w € W is such that the chambers C and w(C) are
on opposite sides of the line D, then [(sw) = I(w)—1 (the lengths being taken
with respect to S = {s, s’}). Indeed, the assumption implies that w(C) = C,
with —m < n < 0. If n = —2k, we have w = (ss')* and sw = s'(ss')*71, so
l(w) = 2k and I(sw) = 2k — 1 (Chap. IV, §1, no. 2, Remark). If n = -2k +1,
we have

w=(ss)*"1s and sw = (s's)*"1,

hence l(w) = 2k — 1 and I(sw) = 2k — 2. Q.E.D.

§3. GROUPS OF DISPLACEMENTS GENERATED
BY REFLECTIONS

In this paragraph, we denote by E a real affine space of finite dimension d,
and by T the space of translations of E. We assume that T is provided with a
scalar product (that is, a non-degenerate, positive, symmetric bilinear form),
denoted by (t|t'). For t € T, put || t||= (t|t)'/2. The function d(z,y) = ||z —y||
is a distance on E, which defines the topology of E (§1).

We denote by £ a set of hyperplanes of E and by W the group of dis-
placements of the euclidean space E generated by the orthogonal reflections
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sy with respect to the hyperplanes H € $) (§2, no. 4). We assume that the
following conditions are satisfied:

(D1) For any w € W and any H € 9, the hyperplane w(H) belongs to $;
(D2) The group W, provided with the discrete topology, acts properly on E.

Since E is locally compact, it follows from the Remark of §4, no. 5 of
General Topology, Chap. 111, that condition (D2) is equivalent to the following
condition:

(D'2) For any two compact subsets K and L of E, the set of w € W such that
w(K) meets L is finite.

1. PRELIMINARY RESULTS

Lemma 1. The set of hyperplanes $ is locally finite.

Indeed, let K be a compact subset of E. If a hyperplane H € §) meets K,
the set sg(K) also meets K, since every point of K N H is fixed by sg. The
set of H € ) meeting K is thus finite by (D’2).

We can thus apply to E and $) the definitions and results of § 1. We shall
call the chambers, facets, walls, etc. defined in E by $ simply the chambers,
facets, walls, etc. relative to W. Any displacement w € W permutes the
chambers, facets, walls, etc.

Lemma 2. Let C be a chamber.

(i) For any x € E, there exists an element w € W such that w(z) € C.

(ii) For any chamber C', there is an element w € W such that w(C') = C.

(iii) The group W is generated by the set of orthogonal reflections with
respect to the walls of C.

Let 90t be the set of walls of C and let Wy be the subgroup of W generated
by the reflections with respect to the walls of C.

(i) Let z € E and let J be the orbit of z under the group Woy. It suffices
to prove that J meets C.

Let a be a point of C; there is a closed ball B with centre a meeting J;
since B is compact, property (D’2) of no. 1 shows that BN J is finite. Hence,
there exists a point y of J such that

d(a,y) < d(a,y’) forally in J. (1)

We shall prove that y € C. For this, it suffices to show that if H is a wall of C
then y € Dy (C) (cf. §1, no. 4, Prop. 9). Since sy € Woy, we have su(y) € J
and so (fig. 1)

d(a,y)* < d(a, su(y))? (2)

by (1). There exist b € H and two vectors ¢ and u such that a = b+t and
y = b+ u, the vector u being orthogonal to H; then su(y) = b — u, and (2)
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is equivalent to (¢t — ult — u) < (¢t + u|t + u), or to (t|u) > 0. This inequality
implies that y € Dy(C).

suly)

/b

Fig. 1

(ii) Let C' be a chamber and a’ € C'. By what we have proved, there
exists w € Wy such that w=*(a’) € C; hence, the chamber C’ meets w(C);
since w(C) is the union of w(C) and facets with empty interior (§1, no. 2,
Prop. 3), we have C' = w(C).

(iii) We have to prove that W = Wgy and for this it suffices to prove
that sy € Woy for all H € $. Now H’ is a wall of at least one chamber
C’ (81, no. 4, Prop. 8); we have seen that there exists w € Wgy such that
C' = w(C); consequently, there exists a wall H of C such that H' = w(H),
hence sy = w.sg.w™! € Way.

2. RELATION WITH COXETER SYSTEMS

THEOREM 1. Let C be a chamber and let S be the set of reflections with
respect to the walls of C.

(i) The pair (W,8S) is a Cozeter system.

(ii) Let w € W and let H be a wall of C. The relation l(sgw) > l(w)
implies that the chambers C and w(C) are on the same side of H.

(iii) For any chamber C', there exists a unique element w € W such that
w(C) =C'.

(iv) The set of hyperplanes H such that sy € W is equal to 9.

Every element of S is of order 2 and Lemma 2 shows that S generates W.
For any wall H of C, denote by Py the set of elements w € W such that the
chambers C and w(C) (which do not meet H) are on the same side of H. We
shall verify conditions (A’), (B’) and (C) of Chap. IV, §1, no. 7.

(A’) 1 € Py: Trivial.

(B’) Pu and su.Py are disjoint: Indeed, w(C) and sgw(C) are on opposite
sides of H, so if w(C) is on the same side of H as C, it is not on the same side
as sgw(C).

(C) Let w € Py and let H' be a wall of C such that wsy ¢ Py, then
wsy = spw: By assumption, w(C) is on the same side of H as C and
wsy (C) is on the other side. Thus, wsy/(C) and w(C) are on opposite sides
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of H; hence, the chambers sy, (C) and C are on opposite sides of the hy-
perplane w~!(H). Let a be a point of the face of C with support H’. The
point @ = sy (a) is in the closure of the two chambers C and sy (C) that are
contained respectively in the two open half-spaces bounded by w~!(H); thus,
a € wl(H), so H = w~1(H). From this we deduce that sg: = w™lsgw,
hence wsy = sgw.

Assertions (i) and (ii) follow from this and Prop. 6 of Chap. IV, §1, no. 7.
Moreover, we have (loc. cit., condition (A))

HQMPH ={1}. 3)

Lemma 2 shows that W acts transitively on the set of chambers. Moreover,
if w € W is such that w(C) = C, then w € Py for every wall H of C, hence
w =1 by (3). This proves (iii).

Finally, let H be a hyperplane such that sy € W. If H did not belong to
$, there would be at least one chamber C’ meeting H (§1, no. 3, Prop. 7).
Every point of HNC' is invariant under sy, and thus belongs to the chambers
C’ and sy(C'); thus, C' = sg(C’), which contradicts (iii) since sy # 1.

COROLLARY. Let X be a set of reflections generating W. Then every re-
flection belonging to W is conjugate to an element of X.

Let $’ be the set of hyperplanes of the form w(H) with w € Wand H € §
such that sy € X. Since W is generated by the family (sy)uegs and since
%' is stable under W, we can apply all the results of this no. to $’ instead
of $; but Th. 1, (iv) shows that every reflection in W is of the form sy with
H € §’, hence the corollary.

3. FUNDAMENTAL DOMAIN, STABILISERS

Recall (Integration, Chap. VII, §2, no. 10, Def. 2) that a subset D of E is
called a fundamental domain for the group W if every orbit of W in E meets
D in exactly one point. This is equivalent to the following pair of conditions:

a) For every x € E, there exists w € W such that w(z) € D.
b) If z,y € D and w € W are such that y = w(z), then y = z (even
though we may have w # 1).

We are going to prove the following three statements:

THEOREM 2. For any chamber C, the closure C of C is a fundamental
domain for the action of W on E.

PROPOSITION 1. Let F be a facet and C a chamber such that F C C. Let
w € W. The following conditions are equivalent:

(i)  w(F) meets F;

(i) w(F)=F;

(iil) w(F)=TF;
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(iv) w fizes at least one point of F;

(v) w fizes every point of F;

(vi) w fizes every point of F;

(vii) w belongs to the subgroup of W generated by the reflections with respect
to the walls of C containing F.

For every subset A of E, denote by W(A) the subgroup of W consisting
of the elements that fix every point of A.

PROPOSITION 2. Let A be a non-empty subset of E, let s be the set of
hyperplanes H € § containing A, let A’ be the intersection of the H € Ha,
and let F be a facet of E open in A’ (§1, no. 3, Prop. 7). Then W(A) =
W(A') = W(F), and W(A) is generated by the reflections with respect to the
hyperplanes in Ha .

We first prove the following assertion:

(I) Let C be a chamber, let z and y be two points of C and let w € W be
such that w(z) = y. Then x = y and w belongs to the subgroup W, where
M is the set of walls of C containing x.

We argue by induction on the length ¢ of w (relative to the set S of
reflections with respect to the walls of C), the case ¢ = 0 being obvious. If
g > 1, there exist a wall H of C and an element w’ € W such that w = syw’
and l(w’) = q — 1. Since l(sgw) < l(w), the chambers C and w(C) are on
opposite sides of H by Th. 1 of no. 2. Thus, C N w(C) C H, so y € H. Thus
y = w'(z) and the induction hypothesis implies that z = y and w’ € Wa.
Since y € H, it follows that H € 91, and hence that w = sgw’ € Wy,
completing the proof of (I).

Proof of Theorem 2: this follows from (I) and Lemma 2.

Proof of Proposition 1: we know that two distinct facets are disjoint and
have distinct closures (§ 1, no. 2, Cor. of Prop. 3). The equivalence of (i), (ii)
and (iii) follows. On the other hand, it is clear that

(vil) = (vi) = (v) = (iv) = (i)
and assertion (I) shows that (i) = (vii).

Proof of Proposition 2: let A” be the affine subspace of E generated by
A. Clearly, W(A) = W(A”). By Prop. 7 of §1, no. 3, there exists a point
z € A” that does not belong to any hyperplane H € - $a. Let F; be the
facet containing z: it is open in A” and Prop. 1 shows that

W(F,;) C W(A") c W(A) = W(A") c W({z}) = W(F,),
hence W(A) = W(A’) = W(F,). Replacing A by F, we also have
W(A) = W(F),

hence the proposition.
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Remarks. 1) It follows from Th. 2 that, if C is a chamber and F a facet,
there exists a unique facet F' contained in C that is transformed into F by an
element of W.

2) It follows from Props. 1 and 2 that, for any non-empty subset A of E,
there exists a point a € E such that W(A) = W({a}); moreover, the group
W(A) is a Cozeter group (Th. 1).

3) Let C be a chamber of E and S the set of reflections with respect to
the walls of C. Let w € W and let (s1,...,84) be a reduced decomposition
of w with respect to S. If z € C is fixed by w, then s;(z) = z for all j: this
follows from Prop. 1 above and Cor. 1 of Prop. 7 of Chap. IV, §1.

4. COXETER MATRIX AND COXETER GRAPH OF W

Let C be a chamber, S = S(C) the set of orthogonal reflections with respect
to the walls of C and M = (m(s,s’)) the Coxeter matrix of the Coxeter
system (W, S) (Chap. IV, §1, no. 9): recall that m(s,s’) is the order (finite
or infinite) of the element ss’ of W (for s,s’ € S). If C’ is another chamber,
the unique element w € W such that w(C) = C’ defines a bijection

s+ f(s) = wsw™!

from S to S’ = S(C’), and we have m(f(s), f(s')) = m(s,s’). It follows that,
if W acts on the set X of pairs (C, s), where C is a chamber and s € S(C),
by w.(C,s) = (w(C),wsw™?), each orbit i of W in X meets each of the
sets {C} x S(C) in exactly one point, which we denote by (C, s;(C)). Thus,
if I is the set of orbits and 4,5 € I, the number m;; = m(s;(C),s;(C)) is
independent of the choice of chamber C. The matrix M(W) = (m;;); jer is a
Coxeter matrix called the Cozxeter matriz of W. The Coxeter graph associated
to M(W) (Chap. IV, §1, no. 9) is called the Cozxeter graph of W.

Let C be a chamber. For any ¢ € I, denote by H;(C) the wall of C such
that s;(C) is the reflection with respect to H;(C) and by e;(C) the unit vector
orthogonal to H;(C) on the same side of H;(C) as C. The map ¢ — H;(C) is
called the canonically indexed family of walls of C.

PROPOSITION 3. Let C be a chamber and let i, € 1 with ¢ # j. Put
s; = 8;(C), H; = H;(C), e; = €;(C) and define s;, H; and e; similarly.

(i) If H; and H; are parallel, then m;; = oo and e; = —e;.
(i) If H; and H; are not parallel, then m;; is finite and
(exle;) = — cos(m/myy). @)

(ili) We have (e;le;) < 0.

If H; and H; are parallel, s;s; is a translation (§2, no. 4, Prop. 5), so
m;; = o0o. Moreover, either e; = e; or e; = —e;. Now, there exists a point
a (resp. a’) in the closure of C that belongs to H; (resp. H;) but not to H;
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(resp. H;). Then (a’ — ale;) > 0 and (a — a’le;) > 0, which excludes the case
e; = e; and proves (i).

Assume now that H; and H; are not parallel. Choose an origin a € H;NH;
and identify T with E by the bijection t — a+t. Let V be the plane orthogonal
to H;NH; and passing through a. Put I" = VNDy, (C)NDy, (C) (where Dy(C)
denotes the open half-space bounded by H and containing C (§1, no. 1)) and
let D (resp. D’) be the half-line in V contained in H; NV (resp. H; N'V) and
in the closure of I'. For a suitable orientation of V, the set I" is the union of
the open half-lines A in V such that

0< (D,4) < (D,D).

Let W’ be the subgroup of W generated by s; and s;. For any w € W’, the
hyperplanes w(H;) and w(H;) belong to $), contain H; "H; and do not meet
C. It follows that they do not meet I" (§1, no. 5, Prop. 10). The Cor. of
Prop. 7 of §2, no. 5 thus implies (ii).

Finally, assertion (iii) follows immediately from (i) and (ii), since m;; > 2
for i # j.

Remark. Formula (4) is actually valid for all 4,5 € I: in fact, m/m;; = 0 if
m;; = 00, and if ¢ = j then m;; =1 and (e;|e;) = 1.

5. SYSTEMS OF VECTORS WITH NEGATIVE SCALAR
PRODUCTS

Lemma 3. Let q be a positive quadratic form on a real vector space V and let
B be the associated symmetric bilinear form. Let ay,...,a, be elements of V
such that B(a;,a;) <0 fori # j.

(i) If ¢1,. .., cn are real numbers such that q (Z ciai) =0, then

q (Zl: |c,-|ai) =0.

(ii) If q is non-degenerate and if there exists a linear form f on V such
that f(a;) > 0 for all i, the vectors ai,...,an are linearly independent.

The relation B(a;,a;) < 0 for ¢ # j immediately implies that
¢ (Lleile:) < (Laai),
hence (i). If ¢ is non-degenerate, the relation ; ¢;a; = 0 thus implies that
Zi: |cila; = 0;

it follows that, for any linear form f on V, we have 2_ |c;|f(a;) = 0, and

hence ¢; = 0 for all ¢ if we also have f(a;) > 0 for all ¢. This proves (ii).
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Lemma 4. Let Q = (gi;) be a real, symmetric, square matriz of order n such
that:

a) gi; <0 fori # j;

b) there does not exist a partition of {1,2,...,n} into two non-empty
subsets I and J such that (3,5) € I x J implies ¢;; = 0;
c) the quadratic form q(z1,...,%n) = 2. qijziz; on R™ is positive.
1,
Then:

(i) The kernel N of q is of dimension 0 or 1. If dimN = 1, N is generated
by a vector all of whose coordinates are > 0.

(ii) The smallest eigenvalue of Q is of multiplicity 1 and a corresponding
eigenvector has all its coordinates > 0 or all its coordinates < 0.

Since ¢ is a positive quadratic form, the kernel N of g is the set of isotropic
vectors for g (Algebra, Chap. IX, §7, no. 1, Cor. of Prop. 2). Let ay,...,an
be the canonical basis of R™. If Z c;a; € N, Lemma 3 shows that we also

have 2_ |c;|a; € N, and hence 2_ gjsc;| = 0 for all j. Let I be the set of i
K3 7

such that ¢; # 0. If j ¢ I, then gj;|c;| < 0 for ¢ € I and gji|c;| = 0 for
i1 ¢ 1, s0¢q;;=0forj¢Iand i€l Assumption b) thus implies that either
I =@ orI={l,...,n}. Consequently, every non-zero vector in N has all
its coordinates # 0. If dim N > 2, the intersection of N with the hyperplane
with equation z; = 0 would be of dimension > 1, contrary to what we have
just shown. The preceding argument also shows that, if dimN = 1, then N
contains a vector all of whose coordinates are > 0. This proves (i).

On the other hand, we know that the eigenvalues of Q are real (Algebra,
Chap. IX, §7, no. 3, Prop. 5) and positive since q is positive. Let A be the
smallest of them. The matrix Q' = Q- AlL, is then the matrix of a degenerate
positive form ¢’ and the off-diagonal elements of Q' are the same as those of
Q. Consequently, Q' satisfies conditions a), b) and c) of the statement of the
lemma. Since the kernel N’ of ¢’ is the eigenspace of Q corresponding to the
eigenvalue A, assertion (ii) follows from (i).

Lemma 5. Let ey, ..., e, be vectors generating T such that:
a) (eilej) <0 for i # j;
b) there does not exist a partition of {1,...,n} into two non-empty subsets

L and J such that (e;le;) =0 forie€l and j €J.

Then there are two possibilities:

1) (e1,...,en) is a basis of T;

2) n = dimT + 1; there exists a family (¢;)1<ign Of Teal numbers > 0
such that D cie; = 0, and any family (c))1gign of real numbers such that

3
Zi:cgei = 0 4s proportional to (¢;)1<in-
Put ¢;; = (e;ile;). The matrix Q = (g;;) then satisfies the hypotheses of

Lemma 4: conditions a) and b) of Lemma 4 are the same as conditions a)
and b) above, and c) is satisfied since Zq,»jx,-mj =| 2_ze; ||?. The kernel N
,J 1
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of the quadratic form ¢ on R", with matrix Q, is the set of (¢1,...,¢,) € R"
such that 2 ce; = 0. If N = {0}, the e; are linearly dependent and we are

in case 1). If dim N > 0, Lemma 4 (i) shows that we are in case 2).

Lemma 6. Let (e1,...,en) be a basis of T such that (e;|e;) <0 fori # j.
() Ifz = ;ciei € T is such that (z|e;) = 0 for all i, then ¢; 2 0 for all i.
(ii) If z and y are two elements of T such that (z|e;) > 0 and (yle;) >0
for all i, then (z|y) = 0. If (z|e;) > 0 and (yle;) > 0 for all i, then (z|y) > 0.
Under the hypotheses of (i), assume that ¢; < 0 for some . Let f be the
linear form on T defined by f(e;) = 1 and

flej) = —ci/ (kzzzllckl) for j # .

The vectors —z, €1, . . . , e, then satisfy the hypotheses of Lemma 3 (ii) (taking
for q the metric form on T). We conclude that they are linearly independent,
which is absurd. Hence (i). Moreover, if z = > cie; € T and if y € T, then

K3
(zly) = 2_ cies|y), so (ii) follows immediately from (i).

6. FINITENESS THEOREMS

Lemma 7. Let A be a set of unit vectors in T. If there exists a real number
A < 1 such that (ala’) < X for a,a’ € A and a # o/, then the set A is finite.

For a,a’ € A such that a # a’, we have
| a—a |?=2—2(ala’) >2— 2\

Now, the unit sphere S of T being compact, there exists a finite covering of
S by sets of diameter < (2 — 2X)!/2 and each of these sets contains at most
one point of A, hence the lemma.

Denote by U(w) the automorphism of T associated to the affine map
w € W from E to itself. We have

w(z +t) = w(z) + U(w).t for t €T and z € E.

This defines a homomorphism U from the group W to the orthogonal group
of T; the kernel of U is the set of translations belonging to W.

THEOREM 3. (i) The set of walls of a chamber is finite.

(ii) The set of directions of hyperplanes belonging to $ is finite.

(iii) The group U(W) is finite.

Assertion (i) follows immediately from Prop. 3, (iii) and Lemma 7.

We prove (ii). Let C be a chamber and 9t the set of its walls. The facets
of C (relative to §) are the same as those relative to 9 (§ 1, no. 4, Prop. 9).
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Since 9M is finite, they are finite in number. Since a facet meets only finitely
many hyperplanes belonging to §), the set of hyperplanes belonging to £ and
meeting C is finite, hence so is the set A(C) of unit vectors in T orthogonal to
some hyperplane belonging to $ and meeting C. Consequently, there exists
a real number A < 1 such that (a|a’) < A for a,a’ € A(C) and a # d'.

Let A be the set of unit vectors in T orthogonal to a hyperplane belonging
to $). Let a,a’ € A with a # a’. If a and @' are parallel, then a = —a’ and
(ala’) = —1. Otherwise, let H € $ (resp. H' € §) be such that a (resp. a') is
orthogonal to H (resp. H'). We have HNH' # @, and if « € HNH' there exists
an element w € W such that z € w(C). The vectors U(w).a and U(w).a’ then
belong to A(C), we have

(ala’) = (U(w)-a[U(w).a") < A,

and the set A is finite by Lemma 7. Hence (ii).

Now let w € W be such that U(w).a = a for all a € A. Then U(w).t = ¢
for all ¢ belonging to the subspace of T generated by A. On the other hand, if
t € T is orthogonal to A, we have U(sg).t =t for all H € §), hence U(w).t =t
and finally U(w) = 1. Since U(w)(A) = A for all w € W, we deduce that
U(W) is isomorphic to a group of permutations of the finite set A, hence (iii).

PROPOSITION 4. Let C be a chamber and N a set of walls of C. Let W
be the subgroup of W generated by the orthogonal reflections with respect to
the elements of M. For H € N, denote by en the unit vector orthogonal to H
on the same side of H.as C. The following conditions are equivalent:

(i) The group W is finite.

(ii) There ezists a point of E invariant under every element of We.

(iii) The hyperplanes belonging to M have non-empty intersection.

(iv) The family of vectors (eq)uem is free in T.

By property (D2) at the beginning of §3, the stabiliser in W of every
point of E is finite, so (ii) implies (i).

Since the group W is generated by the set of reflections with respect to
the hyperplanes belonging to I, the fixed points of W are the points of E
belonging to every hyperplane H € I, hence the equivalence of (ii) and (iii).

Assume that there exists a point a of E such that a € H for all H € 9 and
let t € T be such that a + ¢ € C. Since (eg|ens) < 0 for H,H’ € 91 such that
H # H' (Prop. 3), and since (t|ley) > 0 for all H € N, Lemma 3 (ii) implies
that the ey for H € N are linearly independent. Consequently, (iii) implies
(iv).

Suppose finally that the family (ey)nen is free. Let a be a point of E. For
any hyperplane H € N, there exists a real number cy such that H consists
of the points a +t of E with (tleg) = cu. Since the family (en) is free, there
exists t € T such that (tleg) = cy for all H € N, and the point a 4+t of E
belongs to all the hyperplanes H € 9. Thus, (iv) implies (iii).
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Remarks. 1) Since W is generated by reflections with respect to the walls of
the chamber C, the preceding proposition gives a criterion for W to be finite.
We shall return to this question in no. 9.

2) Let F be a finite-dimensional real affine space and G a group of au-
tomorphisms of F. For all g € G, denote by U(g) the automorphism of the
space of translations V of F associated to g. Assume that the image U(G) is a
finite subgroup of GL(V); then V has a scalar product invariant under U(G)
(Integration, Chap. VII, §3, no. 1, Prop. 1). If, in addition, G acts properly
on F when it is provided with the discrete topology, and if it is generated by
reflections, we can apply to G the results of this paragraph.

7. DECOMPOSITION OF THE LINEAR REPRESENTATION
OF WONT

Let I be the set of vertices of the Coxeter graph of W (no. 4) and let J be
a subset of I such that no vertex in J is linked to any vertex in I-J. Ley C
be a chamber, s the canonical bijection from I to the set of reflections with
respect to the walls of C, and let W; ¢ be the subgroup generated by the
image s(J). It follows from Chap. IV, §1, no. 9, Prop. 8, that W is the direct
product of the two subgroups W; ¢ and Wi_j c. Let C' be another chamber
and s’ the corresponding injection of I into W. We have seen (no. 4) that if
w € W transforms C into C’, then §'(i) = ws(i)w™! for i € I. Since W; ¢ is
normal in W, it follows that s'(i) € Wy ¢ for all ¢ € J. We deduce that the
subgroup W c does not depend on C. We denote it simply by Wj from now
on.

The definition of W ¢ clearly extends to an arbitrary subset J of I. But if there
exist a vertex in J and a vertex in I-J that are linked, then Wy ¢ is not
normal and depends on the choice of C.

Let TY be the subspace of T consisting of the vectors invariant under
every element of U(W;) and let T; be the subspace orthogonal to T9. Since
W is a normal subgroup of W, it is clear that T§ is invariant under U(W),
and hence so is T7j.

PROPOSITION 5. Let Ji,...,Js be the sets of vertices of the connected com-
ponents of the Cozxeter graph of W. For 1 < p < s, put
— — — m0 —
W, =Wy, T,=Ty,, T,=Tj, and To= 1<D<ST;"

(i) The group W is the direct product of the groups W, (1 <p < s).

(ii) The space T is the orthogonal direct sum of the subspaces To, T4, ...
..., Ts, which are all stable under U(W).

(iii) For all q such that 1 < q < s, the subspace T} of T consists of the
vectors invariant under U(W,); it is the direct sum of the Tp for 1 <p <s
and p # q.
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(iv) Let C be a chamber. The subspace T, (for 1 < p < s) is generated by
the vectors e;(C) for i € J, (in the notation of no. 4).

(v) The representations of W in the subspaces Tp (1 < p < s) are abso-
lutely irreducible, non-trivial, and pairwise inequivalent.

Assertion (i) follows from Chap. IV, §1, no. 9. On the other hand, we
have already seen that the subspaces T), are invariant under U(W), and so is
To. Let C be a chamber; since W, is generated by the reflections s;(C) for
i € Jp, it is clear that T}, is the subspa.ce orthogonal to the e;(C) for i € Jp,
hence (iv). Moreover, 1fz € Jp, j € Jq with p # g, then m;; = 2 since {3,5} is
not an edge of the Coxeter graph of W, so (e;|ej) = 0. Assertion (ii) is now
immediate. And assertion (iii) follows, since T} is the orthogonal complement
of T,.

Finally, let V be a subspace of T}, invariant under U(W,). For all ¢ € J,,
either e; € V or e; is orthogonal to V (§2, no. 2, Prop. 3). Let A (resp. B)
be the set of ¢ € J, such that e; € V (resp. e; is orthogonal to V). Clearly
(eslej) = 0 for i € A and j € B, and since J, is connected, it follows that
either A = @ and V = {0}, or A = J, and V = T,. Consequently, the
representation of W, on T}, is irreducible, hence absolutely irreducible (§2,
no. 1, Prop. 1). It is non-trivial by the very definition of T}. Finally, the last
assertion in (v) follows immediately from (iii).

If the subspace Ty of vectors in T invariant under U(W) reduces to {0},
then W is said to be essential; if the representation U of W on T is irreducible,
then W is said to be irreducible.

COROLLARY. Assume that W # {1}. Then W is irreducible if and only if
it s essential and its Cozeter graph is connected.

Remark. Under the hypotheses of Prop. 5, the subspaces T, for 0 < p <
s are the isotypical components of the linear representation U of W on T
(Algebra, Chap. VIII, §3, no. 4). It follows (loc. cit., Prop. 11) that every
vector subspace V of T stable under W is the direct sum of the subspaces
VNT, for 0 < p < s; moreover (loc. cit., Prop. 10), every endomorphism
commuting with the operators U(w) for w € W leaves stable each of the T}

for 0 < p < s and induces on them a homothety for 1 < p < s. In partlcular,
the bilinear forms @ on T invariant under W are the bilinear forms given by

<Ztk,2tk> Po(to, to) + Z anltplty),

where @ is a bilinear form on Ty and a, (for 1 < p < s) is a real number:
indeed, such a form & can be written uniquely in the form (¢,¢') — (A(¢)|t'),
where A is an endomorphism of T commuting with the U(w) for w € W.
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8. PRODUCT DECOMPOSITION OF THE AFFINE SPACE E

We retain the notation of Prop. 5. For 0 < p < s, let E;, be the set of orbits
of the group T, in E, and let ¢, be the canonical map from E to E,. The
action of T on E passes to the quotient; in particular, T, acts on E, and
it is immediate (for example by taking an origin in E) that E, is an affine
space admitting T), as its space of translations. Put E' = Eg X - - - x E,; this
is an affine space having T = Ty @ --- & T as its space of translations. Let
¢ : E — E’ be the product map of the p; since ¢ commutes with the action
of T, this is a bijection and even an isomorphism of affine spaces. In what
follows, we identify E and E’ by means of ¢; the map ¢, is then identified
with the canonical projection of E’ onto E,.

Since W leaves T, stable, the action of W on E passes to the quotient
and defines an action of W on E, (for 0 < p < s), and hence by restriction an
action of W, on E,, (for 1 < p < s). On the other hand, let C be a chamber,
let < € I and let p be the integer such that i € J,. For any z € E, we have

3:(C)(z) =z — Xe;(C) with A e R.
Since e; € T, for ¢ # p, it follows that
pq(w(z)) = pq(z) for z € E, we W,, 0<g<sandq#p.
Consequently, if w = w; ... w; € W with w, € W, for 1 < p < s, then

w((zo, .- .,xs)) = (o, w1 (1), ..., ws(xs)) (5)

for all z, € E, for 0 < p < s. In other words, the action of W on E = E’
is ezactly the product of the actions of the W, on E, (we put Wy = {1}). It
follows that W, acts faithfully on E, and that W, can be identified with a
group of displacements of the euclidean space E, (the space T}, of translations

of E, being provided, of course, with the scalar product induced by that on
).

PROPOSITION 6. (i) The group W, is a group of displacements of the
euclidean affine space E,; it is generated by reflections; provided with the
discrete topology, it acts properly on Ey; it is irreducible.

(ii) Let $p be the set of hyperplanes H of E, such that sy € W,. The set
$ consists of the hyperplanes of the form

H=EqxE; x - xEp_1 xHp xEpy1 X -+ X Eg,

withp=1,...,s and H, € Hy.

(iii) Every chamber C is of the form Eg x Cy X - - - x Cg, where for each p
the set Cp is a chamber defined in E, by the set of hyperplanes $p,; moreover,
the walls of C, are the hyperplanes p,(H;(C)) for i € J,.

Let C be a chamber. Put H; = H;(C), e; = ¢;(C) and s; = s;(C) for i € I
(in the notation of no. 4).
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(i) Let ¢ be in Jp; since e; € T, and T is the direct sum of the mutually
orthogonal subspaces Tg, T4, ..., Ts, the hyperplane of T orthogonal to e; is
of the form L; + T}, where L; is the hyperplane of T, orthogonal to e;. The
affine hyperplane H; of E is of the form L; + T;, +z, with x € E, and we have

H,;=E0XE1X"'XEP_1XH,ILXEP+1X-'~XES (6)

with H; = L; + ¢p(z) = ¢p(H;). It is now immediate that s; acts in E, by
the reflection associated to the hyperplane H, of E,,. Thus, the group W, is a
group of displacements generated by reflections in E,; the verification of the
properness criterion (D’2) is immediate. Finally, Prop. 5, (v) shows that W,
is irreducible. This proves (i).

(ii) By the Cor. of Th. 1, the set $,, consists of the hyperplanes of the form
wp(Hj) for ¢ in J, and w, in Wy, Further, if w = w; ... w; with w, € W), for
all p, formulas (5) and (6) imply that

’UJ(H,) =Fgx E; x---x Ep—l X ’UJP(Hi) X Ep+1 X -+ X BEg, (7)

from which (ii) follows immediately.
(iii) Let ¢ be in Jp; by formula (6), the open half-space D; bounded by H;
and containing C is of the form

D;=EoxE; X+ xEp_1 XD} X Epj1 X -+ X Eg,
where D] is an open half-space bounded by H in E,. Put C, = q Dj; since
1€Jp

C= ﬂI D;, it follows immediately that
i€

C=EgxCy x---xCg;

consequently, none of the sets C, is empty, and since C does not meet any
hyperplane belonging to $), the set C, does not meet any hyperplane belong-
ing to $,. Prop. 5 of §1, no. 3 now shows that C, is one of the chambers
defined by $),, in E,. By using Prop. 4 of § 1, no. 2, it is easy to see that the
walls of C,, are the hyperplanes H; = ¢, (H;) for i € Jp,.

9. STRUCTURE OF CHAMBERS

Let C be a chamber, let 9 be the set of walls of C, and for H € 90 let ey be
the unit vector orthogonal to H on the same side of H as C.

PROPOSITION 7. Assume that the group W is essential and finite. Then:
(i) There exists a unique point a of E invariant under W.
(ii) The family (eq)uesm is a basis of T.
(iii) The chamber C is the open simplicial cone with vertex a defined by
the basis (ey)uem of T such that (euley:) = Ounr.
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(i) By Prop. 4 of no. 6, there exists a point a € E invariant under W. Let
t € T be such that t + a is invariant under W. For all w € W,

U(w)t+a=w(t+a)=t+a,

so U(w).t = t; since W is essential, this implies that ¢ = 0, showing the
uniqueness of a.

(ii) Since W is essential, T = T in the notation of no. 7, and Prop. 5, (iv)
shows that the family (eg)uesm generates the vector space T. The existence
of a point of E invariant under W shows that the family (em)uecon is free
(no. 6, Prop. 4).

(iii) Let a be the unique point of E invariant under W. Since (em)ucon is
a basis of T, and since the scalar product is a non-degenerate bilinear form
on T, there exists a unique basis (ef;)uem of T such that (ey|egy,) = dunr for
H,H' in 9. Every point z of E can be written uniquely in the form z = t+a
with ¢t = HEZEDI &u.efy and the &y real. Then z belongs to C if and only if, for

every hyperplane H € 9, x is on the same side of H as ey, or in other words
(tlem) = &g is strictly positive. Hence (iii).

PROPOSITION 8. Assume that the group W is essential, irreducible and
infinite. Then:

(i) No point of E is invariant under W.

(if) We have Card M=dim T+1, and there ezist real numbers cg > Osuch
that H;gn cu.en=0. If the real numbers cjy are such that HEZM cy-en =0, there

exists a real number & such that ¢y = &cu for all H in M.
(iii) The chamber C is an open simplez.

Assertion (i) follows from Prop. 4. On the other hand, since W is essential,
the vectors (ey)uesm generate T. We have (eglen/) < 0 for H,H' € 9 and
H # H' (Prop. 3) and, since W is irreducible, there does not exist a partition
of M into two disjoint subsets M’ and M such that H' € M’ and H' € M”
imply that (eys|eg~) = 0. We can thus apply Lemma 5 of no. 5, and case 1)
of that lemma is excluded; indeed, the ey are not linearly independent, since
W has no fixed point. Assertion (ii) follows.

We now prove (iii). Number the walls of C as Hp,Hy,...,Hy and put
tm = en,,. By (ii), the vectors t1, .. .,t4 form a basis of T, so the hyperplanes
Hi,...,Hg have a point ag in common, and there exists a basis (¢},...,t) of
T such that (¢m,t],) = dmn; moreover, again by (ii) there exist real numbers
¢ >0,...,¢cq > 0 such that

to = —(c1.t1 + -+ + cq.tqg).

Since the vector tg is orthogonal to the hyperplane Hg, there exists a real
number ¢ such that Hy is the set of points x = t + ag¢ of E with (t|tg) = —c.

Every point of E can be written uniquely in the form z = ¢ + ag with
t =&t + -+ &t and &, ..., &y real. The point z belongs to C if and
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only if it is on the same side of H,, as t,, for 0 < m < d; this translates into
the inequalities (t|t1) > O,...,(t[ts) > 0, and (t|to) > —e¢, or equivalently
by &1 > 0,...,&4 > 0, c1&1 + -+ + cq€q < c. Since C is non-empty, ¢ > 0.
Put a,, = ag + oty for 1 < m < d; then the chamber C consists of the

d

points of E of the form ag + ZI Am-(am — ao) with Ay > 0,...,Ag > 0 and
m=

A1+ -+ X3 <1, s0 C is the open simplex with vertices ao,...,aq. Q.E.D.

Remarks. 1) Identify E with Eg x By X -+- x E; and W with Wy x -+« x W,
as in no. 8. By Prop. 6, the chamber C is then identified with

Egx Cy x -+ x Cg,

where C,, is a chamber in E, with respect to the set of hyperplanes §),. By
Props. 7 and 8, each of the chambers Cy,...,C;, is an open simplicial cone
or an open simplex.

2) Assume that W is irreducible and essential. If H and H' are two walls
of C, then muyy: = +oo if and only if ey = —eys (Prop. 3). By Props. 7
and 8, this can happen only if H and H' are the only walls of C and E is of
dimension 1. Thus, the only case in which one of the myy- is infinite is that
in which E is of dimension 1 and the group W is generated by the reflections
associated to two distinct points (cf. §2, no. 4).

In the general case, the entries of the Coxeter matrix associated to W are
finite unless at least one of Ey,...,E; is of the preceding type.

10. SPECIAL POINTS

Let L be the set of translations belonging to W and let A be the set of t € T
such that the translation z — t + = belongs to L. It is immediate that A
is stable under U(W) and that L is a normal subgroup of W. Since W acts
properly on E, the same holds for L, and it follows easily that A is a discrete
subgroup of T. For any point z of E, denote by W, the stabiliser of z in W.

PROPOSITION 9. Let a € E. The following conditions are equivalent:

(i) We have W = W,.L;

(ii) The restriction of the homomorphism U to W, is an isomorphism
from W, to U(W);

(iii) For every hyperplane H € $), there exists a hyperplane H' € $) parallel
to H and such that a € H'.

It is clear that (i) < (ii), since L is the kernel of U and LN'W, = {1}.

Assume (i) and let H € $); then sy € W,.L so there exists a vector ¢t € A
such that a = sy(a) + t; the vector ¢ is orthogonal to H, and if H' = H + 3t
then sy/(z) = su(z) +t for all z € E (cf. §2, no. 4, Prop. 5). Since t € A and
su € W, we have sy € W, and so H' € $; we also have a = sy/(a), and so
a € H'. Thus, (i) implies (iii).
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Assume (iii). Let H € $); take H' as in (iii). Then sp/(a) = a, so sur € Wy;
since H is parallel to H’, the element w = sy/sg of W is a translation (§2,
no. 4, Prop. 5), so w € L; then sy = sgpw € W,.L. Since W is generated by
the family (sg)mes, it follows that W = W,.L and hence (iii) implies (i).

DEFINITION 1. A point a of E is special for W if it satisfies the equivalent
conditions in Prop. 9.

It is clear that the set of special points of E is stable under W.

PROPOSITION 10. There exists a special point for W.

By Prop. 6 of no. 8, we need only consider the case when W is essential.
The group U(W) of automorphisms of T is finite (cf. no. 6, Th. 3) and
U(sy) is an orthogonal reflection for every hyperplane H; moreover, U(W) is
generated by the family (U(sy))ueg. By Prop. 7 of no. 9, there exists a basis
(ei)ie1 of T such that the group U(W) is generated by the set of reflections
(8:)ic1 defined by
Si(t) =t— 2(t|€z)6z

The Cor. of Th. 1 of no. 2 shows that every reflection s € U(W) is of the form
s = U(sy) with H € . We can thus find in § a family of hyperplanes (H;);c1
such that s; = U(sy,) for all 4. Since the vectors e; are linearly independent,
there exists a € E such that a € H; for all ¢ € I. We have sy, € W, so
U(W) = U(W,), which means that W = W,.L since L is the kernel of U.
Thus, a is special.

When W is finite and essential, there is only one special point for W, namely
the unique point invariant under W. Thus, the consideration of special points
is interesting mainly when W is infinite.

PROPOSITION 11. Assume that W is essential. Let a be a special point for
W. The chambers relative to W, are the open simplicial cones with vertex
a. For every chamber C' relative to W, there erists a unique chamber C
relative to W contained in C' and such that a € C. The union of the w'(C)
forw' € W, is a closed neighbourhood of a in E. Every wall of C' is a wall of
C. If W is infinite and irreducible, the walls of C are the walls of C' together
with an affine hyperplane not parallel to the walls of C'.

Let ' be the set of H € § containing a. The group W, is generated by
the sy for H € $)’ (no. 3, Prop. 2). The chambers relative to W, are the open
simplicial cones with vertex a (no. 9, Prop. 7). Let C’ be such a chamber and
let U be a non-empty open ball with centre a not meeting any element of
H-9'. Since a € C’, there exists a point bin UNC’. Then b ¢ H for all H € §,
so b belongs to a chamber C relative to §. Since $’ C ), we have C C C'. The
set UNC’ does not meet any H € § and is convex, so UNC’ C C; thus a € C.
Conversely, let C; be a chamber relative to W contained in C’ and such that
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a € Cy; then C; meets U and UNC; € UNC’ = UN C; the chambers C
and Cy, having a point in common, must coincide. For any w’ € W, we have
w'(U) = U, so

UNnw'(C)=w'(UNC)=w'(UNC) =Unw'(C);

since the union of the w'(C) for w’ € W, is dense in E, the union of the
UNw'(C) = UNnw/(C’) is dense in U, and the union of the w’(C) for w’ € W,
thus contains U. Finally, if H is a wall of C’, there exist a point c€ UNH
and an open neighbourhood V C U of ¢ such that VN C’ is the intersection
of V and the open half-space bounded by H containing C’; since VN C’' =
VNUNC' =vVvNnUNC=VnQC, it follows that H is a wall of C. If W is
infinite and irreducible, C is an open simplex (no. 9, Prop. 8) and so has one
more wall than the open simplicial cone C'.

COROLLARY. Assume that W is essential.

(i) If a € E is special, there exists a chamber C such that a is an extremal
point of C.

(ii) If C is a chamber, there exists an extremal point of C that is special.

The first assertion follows from Prop. 11. The second follows from the
first and the fact that W acts transitively on the set of chambers.

However, an extremal point of C is not necessarily a special point for W (cf.
Chap. VI, Plate X, Systems B, and Gg).

Remark. 1) Assume that W is essential, irreducible and infinite and retain
the notation of Prop. 11. Since U is an isomorphism from W, to U(W), it
follows that the Coxeter graph of the group of displacements U(W) (which
is generated by the reflections U(sy) for H € $) can be obtained from the
Coxeter graph of W by omitting the vertex i corresponding to the unique
wall of C that is not a wall of C’.

PROPOSITION 12. Assume that W is essential. Let a be a special point, let
L(a) be the set of its transforms under the group of translations L, and let C
be a chamber. Then C meets L(a) in a unique point; this point is an extremal
point of C.

There exists a chamber C; such that a is an extremal point of C; (Cor.
of Prop. 11). Every chamber is of the form C = tw’(C;) with v’ € W, and
t € L since W = W,.L; thus tw’(a) = t(a) € L(a) is an extremal point of C.
On the other hand, C cannot contain two distinct points of L(a) since C is a
fundamental domain for W (no. 3, Th. 2).

Remark. 2) The set L(a) is contained in the set of special points, but in
general is distinct from it (cf. Chap. VI, §2, no. 2 and Plates I to VI).
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§4. GEOMETRIC REPRESENTATION OF A
COXETER GROUP

In this paragraph, all the vector spaces considered are real vector spaces.

1. FORM ASSOCIATED TO A COXETER GROUP

Let S be a set and let M = (m(s, s')s,scs) be a Cozeter matriz (Chap. IV,
81, no. 9) of type S. Recall that this means:

(1)  The elements of M are integers or +oo.
(2) M is symmetric.

(3) m(s,s)=1for all s.

(4) m(s,8')=22fors+#s.

Let E=R® let (es)ses be the canonical basis of E, and let By be the
bilinear form on E such that
Bum(es,es) = — cos m

The form By is symmetric. It is called the associated form of the matrix
M. We have

BuMm(es,es) =1 and By(es,esr) <0 if s#s'.

Let s € S and let fs be the linear form z — 2Bys(es, z). We denote by o, the
pseudo-reflection defined by the pair (es, f5) (cf. §2, no. 1); since (es, fs) = 2,
it is a reflection (§2, no. 2). We have

os(z) =z — 2Bm(es, z).-€5

and in particular
/) = eg + 2cos —F—.e .

os(esr) = ey + ms.5) "
Since e, is not isotropic for By, the space E is the direct sum of the line Reg
and the hyperplane H; orthogonal to e;. Since o is equal to —1 on Res and
to 1 on Hg, it follows that o5 preserves the form By;. When S is finite and
Bwm is non-degenerate (a case to which we shall return in no. 8), it follows
that o5 is an orthogonal reflection (§2, no. 3).
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2. THE PLANE E; s AND THE GROUP GENERATED BY o
AND o4

In this number, we denote by s and s’ two elements of S with s # s’. Put
m = m(s, s’) and denote by E; o the plane Re; @ Re, .

PROPOSITION 1. The restriction of Bm to Es s is positive, and it is non-
degenerate if and only if m is finite.
Let z = zes + yey, with z,y € R, be an element of E; ;». We have

Bum(z,2) = 2% — 2zy cos % +y?
—(:c cosﬂ>2+ 2gin% =
- Y. m y ma

which shows that By is positive on E; ¢, and that it is non-degenerate there
if and only if sin Z # 0. The proposition follows.

The reflections o, and oy leave E; 5 stable. We are going to determine
the order of the restriction of o504 to Es . We distinguish two cases:

a) m = +oo. '

Let u = e5 + es». We have By(u, es) = Bm(u,es) = 0, so u is invariant
under o5 and o, . Moreover,

os(os(es)) = os(es + 2es) = 3es + 2es = 2u + e,

hence
(0s05)"(es) = 2nu+e; for all n e Z.

It follows that the restriction of o504 to Es ¢ is of infinite order.

b) m is finite.

The form By provides E; o+ with the structure of a euclidean plane. Since
the scalar product of e, and ey is equal to —cos Z- = cos (7r — %), we can
orient E; ,/ so that the angle between the half-lines R e; and R, ey is equal
tor — X If D and D’ denote the lines orthogonal to e, and e,

(D',D) = 7 — (D,D) = .
m

Now, the restrictions o5 and 7 of s and o, to E, s are the orthogonal
symmetries with respect to D and D’. By the Cor. to Prop. 6 of §2, no. 5, it
follows that ;G is the rotation with angle %’ In particular, its order is m.

We now return to E:

PROPOSITION 2. The subgroup of GL(E) generated by os and oy is a
dihedral group of order 2m(s,s’).

Since o5 and o are of order 2, and are distinct, it is enough to show that
their product o504 is of order m(s, s’). When m(s, s’) is infinite, this follows
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from a) above. When m(s, s') is finite, it follows from Prop. 1 that E is the
direct sum of E; » and its orthogonal complement V ; since o5 and o, are
the identity on V, ¢, and since the restriction of os04 to E; 4 is of order
m(s, s’) by b), the order of o504 is indeed equal to m(s, s’).

3. GROUP AND REPRESENTATION ASSOCIATED TO A
COXETER MATRIX

We retain the notation of the preceding numbers. Let W = W(M) be the
group defined by the family of generators (gs)ses and the relations'

(9595 )™**) =1, fors,s' €8S, m(s,s) # +oo.

PROPOSITION 3. There exists a unique homomorphism
o0: W — GL(E)

such that 0(gs) = o5 for all s € S. The elements of (W) preserve the bilinear
form By.

To prove the existence and uniqueness of o, it is enough to show that
(0505 )™%) = 1 if m(s,s') # +oo. Now, if s = ¢, this follows from the
fact that o is of order 2; if s # &', it follows from what we proved in no. 2.
Finally, since the reflections o preserve By, so do the elements of a(W).

Remark. 1) We shall see in no. 4 that o is injective; the group W can thus
be identified with the subgroup of GL(E) generated by the o.

PROPOSITION 4. a) The map s — gs from S to W is injective.
b) Each of the gs is of order 2.
c) If s,8' €8S, gsgs is of order m(s,s').
Assertion a) follows from the fact that the composite map

S gs 05

from S to GL(E) is injective.

For b) (resp. c)), we remark that the order of g5 (resp. the order of g;gs)
is at most 2 (resp. at most m(s,s’)). Since we have seen in no. 2 that the
order of o (resp. of o504 ) is 2 (resp. m(s, s’)), we must have equality.

In view of a), S can be identified with a subset of W by means of the map
5 gs.

! This means that, if Ls denotes the free group on S, W is the quotient of Lg

by the smallest normal subgroup of Ls containing the elements (ss')m(s'sl), for
m(s,s’) # +oo.
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COROLLARY. The pair (W,S) is a Cozeter system with matriz M.

This is simply the content of properties b) and c), together with the defi-
nition of W.

Remark. 2) We have thus shown that every Cozeter matriz corresponds to
a Cozeter group.

4. CONTRAGREDIENT REPRESENTATION

Let E* be the dual of E. Since W acts on E via o, it also acts, by transport
of structure, on E*. The corresponding representation

c*:' W — GL(E")
is called the contragredient representation of o. We have
o*(w) =to(w™") for all w € W.

If z* € E* and w € W, we denote by w(z*) the transform of z* by o*(w).

If s € S, denote by A, the set of z* € E* such that z*(es) > 0. Let C be
the intersection of the A;, s € S. When S is finite, C is an open simplicial
cone in E* (§1, no. 6).

THEOREM 1 (Tits). If w € W and CNw(C) # @, then w = 1.
We indicate immediately several consequences of this theorem:

COROLLARY 1. The group W acts simply-transitively on the set of w(C)
forweWw.

This is clear.

COROLLARY 2. The representations o and o* are injective.
Indeed, if o*(w) = 1, then w(C) = C, so w = 1 by the theorem. The
injectivity of o follows from that of o*.

COROLLARY 3. If S is finite, 0(W) is a discrete subgroup of GL(E) (pro-
vided with its canonical Lie group structure); similarly, o*(W) is a discrete
subgroup of GL(E*).

Let z* € C. The set U of g € GL(E*) such that g(z*) € C is a neigh-
bourhood of the identity element in GL(E*); by the theorem,

o (W)nU = {1}

thus, o*(W) is a discrete subgroup of GL(E*). By transport of structure, it
follows that o(W) is discrete in GL(E).
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Proof of Theorem 1.

If w € W, denote by l(w) the length of w with respect to S (Chap. IV,
§1, no. 1).

We are going to prove the following assertions, where n denotes an integer
>0
(Pn) Let w € W, with l(w) =n, and s € S. Then:

either w(C) C As;

or w(C) C s(As) and I(sw) = l(w) — 1.
(Qn) Let w € W, with l(w) = n, and s,s' € S, s # s'. Let W, o be the
subgroup of W generated by s and s'. There exists u € W o such that

w(C) C u(A;NAy) and I(w) = 1(u) + (v w).

These assertions are trivial for n = 0. We prove them by induction on n,
according to the scheme

((Pn) and (Qn)) = (Pn+1) and ((Pn+1) and (Qn)) = (Qn+1)'

Proof that ((Pn) and (Qn)) = (Pn+1).

Let w € W, with {(w) =n + 1, and s € S. We can write w in the form
w = s'w' with ' € S and l(w') =n. If & = s, (P,) applied to w’ shows that
w'(C) C Ag, hence w(C) C s(A;) and I(sw) = l(w') = l(w) — 1. If &' # s,
(Qr) applied to w’ shows that there exists u € W o such that

w'(C) Cu(As NAy) and I(w') = I(u) + I(u™ w).
We have w(C) = s'w’(C) C s'u(As; NAy).

Lemma 1. Let s,s' € S, with s # &', and let v € W, 5. Then v(As N Ayr) is
contained in either As or in s(As), and in the second case l(sv) = I(v) — 1.

The proof will be given in no. 5.
We apply the lemma to the element v = s’u. There are two possibilities:
either
su(AsNAy) CAs and a fortiori w(C) C A,

or
su(As N Ay) C s(As) and a fortiori w(C) C s(As).

Moreover, in the second case, I(ss'u) = l[(s'u) — 1. Hence

I(sw) = I(ss'w) = I(ss'uutw') < I(ss'u) + I(u™ w’)
=1(s'u) +l(u ') -1 < l(w) — 1,

and we know that this implies that [(sw) = I(w) — 1.
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Proof that (Pp+1) and (Qr)) = (Qn+1)-

Let w € W, with [(w) =n+1, and 5,8’ € S, s # §'. If w(C) is contained
in A; N Ay, condition (Qp+1) is satisfied with w = 1. For if not, suppose for
example that w(C) is not contained in A;. By (Pnt1), w(C) C s(As) and
l(sw) = n. By (Qn), applied to sw, there exists v € W, o such that

sw(C) Cv(A;NAy) and I(sw) = Il(v) + l(v™ sw).

Then
w(C) C sv(As NAy)

and
l(w) =14 1(sw) = 1+ 1(v) + (v sw)

> U(sv) + 1((sv) " w) > l(w),

so the inequalities above must be equalities. It follows that (Qn,+1) is satisfied
with u = sv.

Proof of the theorem.

Let w € W, with w # 1. We can write w in the form sw’ with s € S and
l(w") = l(w) — 1. By (Py,), applied to w’ and n = I(w’), we have w'(C) C A,
since the case w'(C) C s(As) is excluded because I(sw’') = l(w) = l(w') + 1.
So w(C) = sw'(C) C s(As), and since As; and s(A;) are disjoint, we have
Cnw(C)=2. QE.D.

5. PROOF OF LEMMA 1

Let E; ,/ be the dual of the plane E; » = Re; @ Res (no. 2). The transpose
of the injection E; o — E is a surjection

p:E* - E!

s,s’

that commutes with the action of the group W, o It is clear that A, Ay
and A;N A, are the inverse images under p of corresponding subsets of Ej ,,
(considered as the space of the contragredient representation of the Coxeter
group W, 5+). Moreover, since the length of an element of W, o is the same
with respect to {s, s’} and with respect to S (Chap. IV, §1, no. 8), we are
reduced finally to the case where S = {s,s'}; if m = m(s, s’), the group W is
then a dihedral group of order 2m.

We now distinguish two cases:

a) m = +o0.

Let (e,€’) be the dual basis of (es,es ). Then

se=—e+2, se=¢,
se'=¢, e =2 —¢".
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Let D be the affine line of E* containing € and &’; the formulas above
show that D is stable under s and s’ and that the restriction of s (resp. s')
to D is the reflection with respect to the point €’ (resp. €). Let

f:R—D

be the affine bijection ¢ — 6(t) = te + (1 — t)e’. Let I, be the image under 0
of the open interval Jn,n + 1(, and let C,, be the union of the AL, for A > 0.
Then Cy = C; moreover, by the Remark of §2, no. 4, applied to the affine
space D, the I, are permuted simply-transitively by W; hence so are the C,.
If v € W, v(C) is equal to one of the C,, hence is contained in A, if n > 0
and in s(A;) if n < 0. In the second case, Ip and I,, are on opposite sides of
the point €’; hence I(sv) = l(v) — 1 (loc. cit.).

b) m is finite.

The form By is then non-degenerate (no. 2) so we can identify E* with E.
We have seen that E can be oriented so that the angle between the half-lines
Rye; and R ey is equal to 71— Z. Let D (resp. D) be the half-line obtained
from Re; (resp. Riey ) by a rotation of w/2 (resp. —m/2), cf. Fig. 2. The
chamber C is the set of x € E whose scalar product with e; and e is > 0; this
is the open angular sector with origin D’ and extremity D. By the Remark
of §2, no 5, every element v of W transforms C into an angular sector that
is on the same side of D as C (i.e. is contained in A,) or on the opposite side
(i-e. contained in s(A;)), and in the latter case

I(sv) = l(v) — 1,

which completes the proof of the lemma.
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6. FUNDAMENTAL DOMAIN OF W IN THE UNION OF THE
CHAMBERS

We retain the notation of no. 4. For s € S, denote by H, the hyperplane of
E* orthogonal to e,, by A the set of z* € E* such that (z*,e,) > 0 and by C
the intersection of the A, for s € S. For the weak topology o(E*,E) defined
by the duality between E* and E (Topological Vector Spaces, Chap. II, §6,
no. 2), the A, are closed half-spaces and C is a closed convex cone. Moreover,
C is the closure of C; indeed, if 2* € C and y* € C, then z* + ty* € C for
every real number ¢t > 0 and z* = lim;_,o(z* + ty*).

For X C S, put
sz(ﬂ H)n( N As>.
seX seS—-X

We have Cx C C, Cy = C and Cs = {0}. The sets Cx, for X € B(S), form a
partition of C.

On the other hand, recall (Chap. IV, §1, no. 8) that Wx denotes the
subgroup of W generated by X. Clearly w(z*) = z* for w € Wx and z* € Cx.

PROPOSITION 5. Let X, X’ C S and w,w’ € W. If w(Cx) Nw'(Cx:) # 2,
then X =X/, wWx = w'Wxs and w(Cx) = w’'(Cx/).

We are reduced immediately to the case w’ = 1. The proof is by induction
on the length n of w. If n = 0, the assertion is clear. If [(w) > 0, there exists
s € S such that I(sw) = I(w)—1 and then (cf. the end of no. 4) w(C) C s(Aj),
hence w(C) C s(A;). Since C C Ay, it follows that

Cnw(C) C Hs.
Then s(z*) = z* for all z* € CNw(C), and a fortiori for all
z* € Cx: Nw(Cx).

Consequently, the relation Cx: N w(Cx) # & implies on the one hand
that Cx» N Hs # &, and hence that s € X', and on the other hand that
Cx N sw(Cx) # @. The induction hypothesis then implies that X = X’ and
swWyx = Wx» = Wx, so sw € Wx and w € Wx since s € Wx. It follows
that wWx = Wx+ and that w(Cx) = Cx = Cx-.

COROLLARY. Let X be a subset of S and x* an element of Cx. The stabiliser
of * in W is Wx.

Now let U be the union of the w(C) for w € W, and let § be the set of
subsets of U of the form w(Cx), with X C S and w € W. By the above, § is
a partition of U.
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PROPOSITION 6. (i) The cone U is convez.

(ii) Every closed segment contained in U meets only finitely many elements
of §.

(iii) The cone C is a fundamental domain for the action of W on U.

To prove (iii), it is enough to show that, if z*,y* € C and w € W are
such that w(z*) = y*, then z* = y*. Now there exist two subsets X and Y of
S such that z* € Cx and y* € Cy; we have w(Cx) N Cy # &, and Prop. 5
shows that X =Y and w € Wy, which implies that * = y*.

Now let z*,y* € U; we shall show that the segment [z*y*] is covered
by finitely many elements of §, which will establish both (i) and (ii). By
transforming z* and y* by the same element of W, we can assume that
z* € C. Let w € W be such that y* € w(C). We argue by induction on the
length of w. For s € S, the relation w(C) ¢ Aj is equivalent to w(C) ¢ A,
and hence to I(sw) < l(w) (cf. no. 4). Prop. 7 of no. 8 of Chap. IV, §1 now
implies that there exist only finitely many s € S such that w(C) ¢ A,. The
set T of s € S such that (y*,es) < 0 is thus finite. On the other hand, the
intersection CN[z*y*] is a closed segment [z*z*]. If 2* = y*, that is if y* € C,
there exist subsets X and Y of S such that z* € Cx and y* € Cy. The open
segment |z*y*[ is then contained in Cxny, so [z*y*] C Cx U Cy U Cxny-
If 2* # y*, there exists an s € T such that z* € H;. Then w(C) ¢ A,
and I(sw) < l(w). The induction hypothesis thus implies that the segment
[z*y*] = s([z*(s(y*))]) is covered by a finite number of elements of §, and
hence so is

[z*y*] = [z"2"] U [2"y"]

since [z*2*] c C.

7. IRREDUCIBILITY OF THE GEOMETRIC
REPRESENTATION OF A COXETER GROUP

We retain the notation of the preceding nos., and assume that S is finite.

PROPOSITION 7. Assume that (W,S) is irreducible (Chap. IV, §1, no. 9).
Let E° be the subspace of E orthogonal to E with respect to By. The group
W acts trivially on E°, and every subspace of E distinct from E and stable
under W is contained in E°.

If z € E°, then o4(z) = z — 2Bum(es,z)es = z for all s € S. Since W is
generated by S, it follows that W acts trivially on E°.

Let E’ be a subspace of E stable under W. Let s,s’ € S be two elements
that are linked in the graph I' of (W,S) (Chap. IV, §1, no. 9); recall that
this means that m(s, s’) > 3. Suppose that e; € E’. Then oy (es) € E' and
since the coefficient of ey in o4 (es) is non-zero, we have ey € E'. Since I
is connected, it follows that, if E’ contains one of the e, it contains them all
and coincides with E. Except in this case, it follows from Prop. 3 of § 2, no. 2
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that, for all s € S, E’ is contained in the hyperplane H; orthogonal to es.
Since the intersection of the H, is equal to E°, this proves the proposition.

COROLLARY. Assume that (W,S) is irreducible. Then:

a) If By is non-degenerate, the W-module E is absolutely simple.

b) If Bum is degenerate, the W-module E is not semi-simple.

In case a), Prop. 7 shows that E is simple, hence also absolutely simple
(§2, no. 1, Prop. 1).

In case b), E° # 0, E # E° (since By # 0), and Prop. 7 shows that E° has
no complement stable under W; thus, the W-module E is not semi-simple.

8. FINITENESS CRITERION
We retain the notation of the preceding nos., and assume that S is finite.

THEOREM 2. The following properties are equivalent:
(1) W is finite.
(2) The form By is positive and non-degenerate.
(1) = (2). Let S = US; be the decomposition of S into connected

components (Chap. IV, §1, no. 9), and let W = HW, be the corresponding
12

decomposition of W. The space E can be identified with the direct sum of
the spaces E; = RS", and By can be identified with the direct sum of the
corresponding forms Byg,. We are thus reduced to the case when (W, S) is
irreducible. Since W is assumed to be finite, E is a semi-simple W-module
(Appendix, Prop. 2). By the Cor. to Prop. 5, it follows that E is absolutely
simple. Let B’ be a positive non-degenerate form on E, and let B” be the sum
of its transforms under W. Since B” is invariant under W, it is proportional
to By (§2, no. 1, Prop. 1); since By(es, es) = 1 for all s € S, the coefficient
of proportionality is > 0, and since B” is positive so is By, which proves (2).

(2) = (1). If By is positive non-degenerate, the orthogonal group O(By)
is compact (Integration, Chap. VII, §3, no. 1). Since 6(W) is a discrete sub-
group of O(By) (Cor. 3 of Th. 1), it follows that o(W) is finite, hence so is
W. Q.E.D.

The following result has been established in the course of the proof:

COROLLARY. If (W,S) is irreducible and finite, E is an absolutely simple
W-module.

The finiteness criterion provided by Th. 2 permits the classification of all
finite Coxeter groups (cf. Chap. VI, §4). We restrict ourselves here to the
following preliminary result:

PROPOSITION 8. If W is finite, the graph of (W,S) is a forest (Chap. IV,
Appendix).
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If not, this graph would contain a circuit (s1,...,8,), n = 3. Putting
m; = m(s1, Sit+1), 1 <1 < n, and m, = m(s,, s1), this means that m; > 3
for all i. Let

T=¢€s + - +es,.

Then Bm(z,z) = n + 2 2. Bu(es,, €5, ). Now?
1<J

T T
Bum(es;,€s,4,) = —cosE < —cos§ < —3
and similarly for Bu(es,,, es,). Since the other terms in the sum are < 0, we
obtain
Bm(z,z) <n—n=0,

contrary to the fact that By is positive non-degenerate.

COROLLARY. If (W,S) is irreducible and finite, its graph is a tree.
Indeed, a connected forest is a tree.

Comparison with the results of §3.

First of all let (W, S) be a finite Coxeter group. Denote by (z|y) the form
Bum(z,y); by Th. 2, this is a scalar product on E. For all s € S, let H; be
the hyperplane associated to the orthogonal reflection o, and let § be the
family of hyperplanes w(H;), for s € S, w € W. Let Cy be the set of z € E
such that (z|es) > 0 for all s € S. Finally, identify W (by means of o) with
a subgroup of the orthogonal group O(E) of the space E.

PROPOSITION 9. With the preceding notations, W is the subgroup of O(E)
generated by the reflections with respect to the hyperplanes of $. It is an
essential group (§3, no. 7) and Cqy is a chamber of E relative to .

The first assertion is trivial. On the other hand, if x € E is invariant
under W, it is orthogonal to all the es, and hence is zero; this shows that
W is essential. Finally, the isomorphism E — E* defined by By transforms
Co to the set C of no. 4; the property (P,) proved there shows that, for all

2 The roots of the equation z° — 1 = 0 are 1 and =23 Thus cos Zr = -1 and
_1 io2m V3
consequently cos 3 = 5. Note also that sin 5 = 5, hence
sinz—ﬁ cosl——cos5—7r—£ sin—ﬂ:—sinB—?r—1
3 27 6 6 2’ 6 6 2

Similarly, the roots of the equation 2% — i = 0 are :I:lT"';, o)

T V2 3 3 Q
5

cos% = sin 1= and consequently sin Vil —Ccos — =
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w € W and all s € S, w(Cop) does not meet Hy. It follows that Cy is contained
in the complement U of the union of the hyperplanes of §), and since Cy is
connected, open and closed in U, it is a chamber of E relative to $. Q.E.D.

___ We can apply to W and Cy all the properties proved in § 3. In particular,
Co is a fundamental domain for the action of W on E (in other words, the
cone U defined in no. 6 is equal to the whole of E).

Conversely, let E be a finite dimensional real vector space, provided with
a scalar product (z|y) and let W be an essential finite group of displacements
of E leaving 0 fixed; assume that W is generated by reflections. Let Co be a
chamber of E with respect to W (cf. §3), and let S be the set of orthogonal
reflections relative to the walls of Cy. Then (W, S) is a finite Cozeter system
(§3, no. 2, Th. 1). Moreover, if s € S, denote by H, the wall of Cq corre-
sponding to s, and denote by es the unit vector orthogonal to H,; and on the
same side of H; as Cyg. If (m(s,s’)) denotes the Coxeter matrix of (W, S),
Props. 3 and 7 of § 3 show that

(esles’) = —cos(m/m(s,s’))

and that the e; form a basis of E. The natural representation of W on E can
thus be identified with the representation o of no. 3.

9. CASE IN WHICH By IS POSITIVE AND DEGENERATE

In this number, we assume that S is finite, that (W, S) is srreducible, and that
the form By is positive and degenerate.

Lemma 2. The orthogonal complement E® of E for By is of dimension 1; it

s generated by an element v = stses with vg > 0 for all s.
s€

This follows from Lemma, 4 of § 3, no. 5, applied to the matrix with entries
Bum (es ) €s! ) .

Let v = ) vse, be the vector satisfying the conditions of Lemma 2 and
S
such that 2_ v, = 1, and let A be the affine hyperplane of E* consisting of the

S

y* € E* such that (v,y*) = 1. If T denotes the orthogonal complement of v in
E*, A has a natural structure of an affine space with space of translations T.
Moreover, the form By, defines by passage to the quotient a non-degenerate
scalar product on E/E°, hence also on its dual T; this gives a euclidean
structure on the affine space A (Algebra, Chap. IX, §6, no. 6).

Let G be the subgroup of GL(E) consisting of the automorphisms leaving
v and By invariant; if g € G, the contragredient map tg~! leaves A and T
stable, and defines by restriction to A a displacement i(g) of A (cf. §3). It is
immediate that this gives an isomorphism from G to the group of displace-
ments of A. Moreover, the stabiliser G, of a point a of A can be identified
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with the orthogonal group of the Hilbert space T and is thus compact. On
the other hand, G is a locally compact group countable at infinity and A is
a Baire space: it follows (Integration, Chap. VII, Appendix, Lemma 2) that
the map 9 : g — g(a) defines a homeomorphism from G/G, to A. Thus G
acts properly on A (General Topology, Chap. III, §4, no. 2, Prop. 5). Since W
is a subgroup of G, it can be identified with a group of displacements of A.
We are going to show that this group satisfies the assumptions of § 3. More
precisely:

PROPOSITION 10. The group W provided with the discrete topology acts
properly on A; it is generated by orthogonal reflections; it is infinite, irre-
ducible and essential (§3, no. 7). The intersection CN A is a chamber of A
for W. If Ls denotes the hyperplane of A formed by the intersection of A
with the hyperplane of E* orthogonal to es, the L, for s € S are the walls of
CNA. Ifes is the unit vector of T orthogonal to Ls on the same side of Ls as
CN A, then (g5|er) = — cos(m/m(s,t)) (for s,t € S) and the Cozeter matriz
of W (§3, no. 4) is identified with M.

By Cor. 3 of Th. 1, W is discrete in GL(E), and hence in G, and acts
properly on A. Let s € S. Since Card S > 2, the hyperplane of E* orthogonal
to es is not orthogonal to v and its intersection Ls with A is indeed a hyper-
plane. The displacement corresponding to s is thus a displacement of order 2
leaving fixed all the points of Ly: it is necessarily the orthogonal reflection as-
sociated to L. It follows that W is generated by orthogonal reflections. Th. 2
now shows that it is infinite and Prop. 7 that it is essential and irreducible.

Since C is an open simplicial cone, whose walls are the hyperplanes with
equations (z*,es) = 0 (for s € S), the intersection C N A is a convex, hence
connected, open and closed subset of the complement of the union of the
L, in A. Moreover, C N A is non-empty, for if 2* € C we have (z*,v) =
Zs:vs(z*, es) > 0 and (z*,v)~lz* € CNA. It follows that CN A is a chamber

of A relative to the system of the L;. Moreover, w(CNA)NL; = & for all
w € W (cf. no. 4, property (P,)) and it follows that CN A is a chamber of A
relative to the system consisting of the transforms of the Ls by the elements
of W; by the Cor. of Th. 1 of § 3, no. 2, it follows that CN A is a chamber of
A relative to W.

Let a% be the vertex of the simplex CN A not in L;. We have

(a5,e:) =0
for s,t € S and s # ¢, and
(a3, €s) = vy {ag, v) = v; "
Let €5 be the vector in T defined by the relations:

(eslat —a}) =wv;! for t€S, t#s.
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The vector ¢, is orthogonal to Ls and is on the same side of the hyperplane
Ls; as CN A. Moreover

(es|lay — ay) = (es,a; —a;) forall s,t€S

which shows that €, is the image of the class of e, under the isomorphism
from E/E° to T given by the quadratic form By. It follows that

(€s|€t) = BM(esy et)'
Consequently ¢, is a unit vector and the last assertion of Prop. 10 is proved.

The euclidean affine space A provided with the group W is called the
space associated to the Cozeter matriz M and we denote it by Ap.
Proposition 10 admits a converse:

PROPOSITION 11. Let W be a group of displacements of a euclidean affine
space A, satisfying the assumptions of § 3. Assume that W is infinite, essential
and irreducible. Then the form By attached to the Cozeter matriz M of
W is positive degenerate and there exwists a unique isomorphism from the
affine space Ay associated to M to A, commuting with the action of W. This
tsomorphism transforms the scalar product of Ay into a multiple of the scalar
product of A.

Let Cy be a chamber of A and let S be the set of orthogonal reflections
with respect to the walls of Cqy. If 15 denotes the unit vector orthogonal to
the hyperplane N; associated to the reflection s and on the same side of N
as Cyp (§3, Prop. 3), the form By is such that By (es, e:) = (ns|n:) for s,t € S.
It is thus positive. Since the 75 are linearly dependent (§ 3, no. 9, Prop. 8), it
is degenerate.

We can thus apply the preceding constructions to M. With the same
notation as above, (g5le;) = (ns|n:) and there exists a unique isomorphism ¢
of Hilbert spaces from T to the space of translations of A such that ¢(g5) = 7s.
Let a and b be two distinct vertices of Cy and sg the reflection in S such that
a ¢ Ng,. Put A = (ns|a — b) and let 9 be the affine bijection from Ay to A
defined by

Y(as, + ) = a+vsoAp(z) for z € T.

It is then immediate that 1(Ls) = N, for all s € S and that 9 transforms
the scalar product of Ay into a multiple of that on A. It follows at once that
% commutes with the action of W. Finally, the uniqueness of 9 is evident,

for a5 for example is the unique point of Ay invariant under the reflections
tesS, t#s.
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§5. INVARIANTS IN THE SYMMETRIC ALGEBRA

1. POINCARE SERIES OF GRADED ALGEBRAS

Let K be a commutative ring with unit element, not reduced to 0. Let M be
a graded K-module of type Z, and M,, the set of homogeneous elements of
M of degree n. Assume that each M, is free and of finite type. Then the rank
rkx (My,) is defined for all n (Commutative Algebra, Chap. II, § 5, no. 3).

DEFINITION 1. If there exists ng € Z such that M, = 0 for n < ng, the
formal series Y. rkx(Mn)T™, which is an element of Q((T)), is called the

n2ngo

Poincaré series of M and denoted by Py (T).

Let M’ be another graded K-module of type Z, and (M), ),cz its grading.
Assume that M/, is zero for n less than a certain number. Then

Pumem: (T) = Pu(T) + Py (T) (1)

and, if M @k M’ is provided with the total grading (Algebra, Chap. II, §11,
no. 5),
Pumem (T) = Pm(T)Pwm (T). (2)

PROPOSITION 1. Let S = @n>0 S, be a commutative graded K-algebra
with a system of generators (z1,%2,...,Tm) consisting of homogeneous and
algebraically independent elements. Let d; be the degree of x;, and assume
that d; > 0 for all i. Then the S, are free and of finite rank over K, and

Po(1) = {1 - 1%) 3)

Indeed, S can be identified with the tensor product K[z1] ® -+ - @ K[zm],
provided with the total grading. The Poincaré series of K[z;] is

'n,;OTndi = (1 - Tdi)_l,

and it suffices to apply (2).

Under the assumptions of Prop. 1, we shall say that S is a graded polyno-
mial algebra over K.

COROLLARY. The degrees d; are determined up to order by S.

m
Indeed, the inverse of Pg(T) is the polynomial N(T) = ,Hl( 1—T4%), which

1=
is thus uniquely determined. If ¢ is an integer > 1 and if ( € C is a primitive
gth root of unity, the multiplicity of the root ¢ of N(T) is equal to the number
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of d; that are multiples of gq. This number is zero for ¢ sufficiently large. The
number of d; equal to ¢ is thus determined uniquely by descending induction.

The integers d; are called the characteristic degrees of S. The number of
them is equal to the transcendence degree of S over K when K is a field; we
shall also call it the transcendence degree of S over K in the general case. It
is the multiplicity of the root 1 of the polynomial N(T).

Let S = P,,5 S» be a commutative graded K-algebra, and R = D, 5, Rn
a graded subalgebra of S. Assume that each R, is free and of finite type,
and that the R-module S admits a finite basis consisting of homogeneous
elements 21, 22, . .., 2N of degrees f1, fo, ..., fn. Then, if M denotes the graded

N
K-module Zl Kz;, the graded K-module S is isomorphic to R ®k M, so each
J:
Sp, is free and of finite type and

N
Ps(T) = Pu(T)PR(T) = (; Tff) Pr(T). (@

PROPOSITION 2. Retain the preceding notation and assume that S and R
are graded polynomial algebras.

(i) R and S have the same transcendence degree v over K.

(ii) Let py,...,pr (Tesp. qi,.--,qr) be the characteristic degrees of S (resp.
R). Then
T N T
H1(1 - T%) = (E Tff) ,Hl(1 — TP,
1= =

h i=1

(i) Np1p2...pr = q1g2- - - gr-

Formula (4) shows first of all that the multiplicity of the root 1 is the
same in the polynomials Ps(T)~! and Pr(T)~! and, taking (3) into account,
proves both (i) and (ii).

It follows from (ii) that

j =1

4 N T
_Hl(1+T+T2+---+Tqi—1) = (ZleJ) Ha+T+T24+.. 4 TP,
1= Jj=

Putting T = 1 in this relation gives (iii).

Remark. Let S = K[X,...,X,] be a graded polynomial algebra over K, d;
the degree of X; and F(Xj,...,X,) a homogeneous element of degree m of

S. Then " 5
F
zz=:1 d,X,a—)(z =mF. (5)



110 GROUPS GENERATED BY REFLECTIONS Ch. V

Indeed, it is immediate that the K-linear map D from S to S that transforms
every homogeneous element z of degree p into pz is a derivation of S. Thus

=~ OF & OF
mF(X1,...,Xn) = D(F(X1,..., X)) = 1; D(Xi)a—xi = i;dixia—xi-

2. INVARIANTS OF A FINITE LINEAR GROUP: MODULAR
PROPERTIES

Let K be a commutative ring, V a K-module, and G a group acting on V. We
know that every automorphism of V extends uniquely to an automorphism
of the symmetric algebra S = S(V), and thus G acts on this algebra. If z € S
and g € G, we denote by gs.z the transform of x by g. Let R be the subalgebra
SG of S formed by the elements invariant under G.

Assume that G is finite, V is of finite type, and K is noetherian. Then S is
an R-module of finite type, and R is a K-algebra of finite type (Commutative
Algebra, Chap. V, §1, no. 9, Th. 2). Assume that S is integral and let N be
its field of fractions. The field of fractions L of R is the set of elements of N
invariant under G (loc. cit., Cor. of Prop. 23), so N is a Galois extension of
L. Every element of N can be written z/t with 2 € S and t € R (loc. cit.,
Prop. 23). By Algebra, Chap. II, §7, no. 10, Cor. 3 of Prop. 26, the rank of
the R-module S is [N : L]. Assume that G acts faithfully on V. The Galois
group of N over L can then be identified with G, so [N : L] = Card G; thus

rkg(S) = [N : L] = Card(G). (6)

For any graded algebra A = Ac®A; ®--- DA, @, denote by A the ideal
®n>0 An

THEOREM 1. Let K be a commutative field, V a finite dimensional vector
space over K, S = S(V) the symmetric algebra of V, G a finite group of auto-
morphisms of V, and R the graded subalgebra of S consisting of the elements
invariant under G. Assume that G is generated by pseudo-reflections (§2,
no. 1) and that ¢ = Card(G) is coprime to the characteristic of K. Then the
R-module S has a basis consisting of ¢ homogeneous elements.

a) Since every submodule of S/(R.S) is free over Ry = K, it is enough to
show (in view of Algebra, Chap. II, §11, no. 4, Prop. 7) that the canon-
ical homomorphism from Ry ®g S to S is injective. For any R-module
E, denote by T(E) the R-module Ker(R; ®g E — E) (*in other words,
T(E) = Tor}(R/R4,E),). If E,E’ are two R-modules and u is a homomor-
phism from E to E’, the homomorphism 1 ® u from Ry ® E to Ry ® E
defines by restriction to T(E) a homomorphism from T(E) to T(E’) that we
denote by T(u). If v’ is a homomorphism from E’ to an R-module E”, we
have T(u' o u) = T(v') o T(u). Thus, if G acts R-linearly on E, then G acts
on T(E).
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b) The group G acts R-linearly on S, and hence also on T(S). Moreover,
T(S) has a natural structure of graded S-module. We show first that, if g € G,
then g transforms every element z of T(S) into an element congruent to x
modulo S;T(S). It is enough to do this when g is a pseudo-reflection. Then
there exists a non-zero vector v in V such that g(z) —z € Kv for all z € V.
Since V generates S, it follows that gg acts trivially on S/Sv. Thus, for any
y € S, there exists an element h(y) in S such that

9s(y) — y = h(y)v.

Since S is integral and v is non-zero, this element is determined uniquely by
y; it is immediate that h is an endomorphism of degree —1 of the R-module
S. Thus, gs — 1 = m,, o h, where m,, denotes the homothety with ratio v in
S. Hence,

T(gs) — 1r(s) = T(gs — 1s) = T(m,) o T(h),

the image of which is contained in vT(S), proving our assertion.
c) We show that any element of T(S) invariant under G is zero. Indeed,
let Q be the endomorphism of the R-module S defined by

Qy) =g 2 gs(v)
geG
for all y € S. Then Q(S) = R. We can thus write Q = i 0 Q’, where Q' is a
homomorphism from the R-module S to the R-module R and i denotes the
canonical injection of R into S. Thus T(Q) = T(i) o T(Q') and T(Q') = 0
since T(R) = Ker(R+ ® R — R) = 0. Thus

0=T(Q) =q"" 2 T(gs).

geG

But ¢! ZG T(gs) leaves fixed the elements of T(S) invariant under G. These
g€

elements are therefore zero.

d) Assume that T(S) # 0. There exists in T(S) a homogeneous element
u # 0 of minimum degree. By b), v is invariant under G. By ¢), u = 0. This
is a contradiction, so T(S) = 0. Q.E.D.

Remarks. 1) It follows from Algebra, Chap. II, §11, no. 4, Prop. 7 that, if
(21,...,7q) is a family of homogeneous elements of S whose canonical images
in S/(R4S) form a basis of S/(R4S) over K, then (z1,...,2,) is a basis of S
over R.

2) Let g be a pseudo-reflection of V, whose order n > 2 is finite and co-
prime to the characteristic of K. By Maschke’s theorem (Appendix, Prop. 2),
V can be decomposed as D @ H, where H is the hyperplane consisting of the
elements of V invariant under g and D is a line on which g acts by multipli-
cation by a primitive nth root of unity. When K = R, this is possible only
when n = 2, and g is then a reflection; in this case, the groups to which Th. 1
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applies are the finite Cozeter groups. (For K = C, on the other hand, Th. 1
applies to certain groups that are not Coxeter groups.)?

THEOREM 2. Retain the assumptions and notation of Theorem 1.

(i) There exists a graded vector subspace of S forming a complement to
R4S in S and stable under G.

(it) Let U be such a complement. The canonical homomorphism from
U®xk R to S is an isomorphism of G-modules, and the representation of G in
U (resp. S) is isomorphic to the regular representation of G on K (resp. R).

Indeed, for any integer n > 0, the K-vector spaces S, and (R+S)N S,
are stable under G, and it follows from Maschke’s theorem (Appendix, Prop.
2) that there exists a G-stable complement U, of (R+S)N S, in S,. Then

;0 U, is a G-stable complement of R4S in S, hence (i).

Let U be a graded vector subspace of S forming a complement of R, S
in S and stable under G. By Remark 1, every basis of the K-vector space U
is also a basis of the R-module S, and consequently is a basis of the field of
fractions N of S over the field of fractions L of R. Thus, the L-vector space N
can be identified with U®g L. Since U is stable under G, this identification is
compatible with the action of G. The group algebra L[G] of G over L can be
identified with the algebra K[G] ®k L. The Galois extension N of L admits a
normal basis (Algebra, Chap. V, §10, no. 9, Th. 6), which can be interpreted
as saying that N, considered as an L{G]-module, is isomorphic to the module
of the regular representation of G over L. Since U is finite dimensional over K,
it follows from the Appendix, Prop. 1, that the K[G]-module U is isomorphic
to the regular representation of G over K. Our assertions follow immediately
from this.

3. INVARIANTS OF A FINITE LINEAR GROUP:
RING-THEORETIC PROPERTIES

THEOREM 3. We retain the assumptions and notation of Th. 1. In the set
of systems of generators of the ideal Ry of R consisting of homogeneous
elements, choose a minimal element (a1, ...,q;). Let k; be the degree of ;.
Assume that the k; are coprime to the characteristic exponent of K. Then
l=dimV, the a; generate the K-algebra R, and are algebraically independent
over K. In particular, R is a graded K-algebra of polynomials of transcendence
degree | over K.

The assumption made about the k; is superfluous, but is irrelevant for the
applications to finite Coxeter groups, since then K = R. Cf. no. 5, where we shall
give another proof of Th. 3.

3 A classification of such groups can be found in G. C. SHEPHARD and J. A.
TODD, Finite unitary reflection groups, Canadian J. of Maths., Vol. VI (1954),
p. 274-304.
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Th. 3 follows from Prop. 2 (i), Th. 1 and the following lemma:

Lemma 1. Let K be a commutative field, S a graded K-algebra of polynomials,
and R a graded subalgebra of S of finite type such that the R-module S admits
a basis (za)aea consisting of homogeneous elements. In the set of systems of
generators of the ideal Ry of R consisting of homogeneous elements, choose
a minimal element (a1,...,as). Assume that, for all i, the degree k; of o
18 coprime to the characteristic exponent p of K. Then the o; generate the
K-algebra R and are algebraically independent over K.

By Algebra, Chap. II, § 11, no. 4, Prop. 7, the assumption made about the
a; is equivalent to saying that they are homogeneous and that their images
in the K-vector space Ry /(R4)? form a basis of this space. This condition
is invariant under extension of the base field; we can thus reduce to the case
where the latter is perfect.

The family (a1, ..., as) generates the algebra R by Commutative Algebra,
Chap. III, § 1, no. 2, Prop. 1. We argue by contradiction and assume that this
family is not algebraically independent over K.

1) We show first of all that there exist families

(Bi)icics,  (Wr)igksr,  (dik)igigs, 1<ksr

of homogeneous elements of S with the following properties:

B; € R for all ¢, and the §; are not all zero; (7
degyr >0 for all k; (8)

; = kZI dipyr  for all 4; 9)
; Bidir, =0 for all k. (10)

Let X, ...,X; be indeterminates and give K[Xy,...,X;] with the graded
algebra structure for which X; has degree k;. There exist non-zero homoge-
neous elements H(Xj,...,X;) of K[Xj,...,X,] such that H(ai,...,as) =
0; choose H to be of minimum degree. If 0H/0X; # 0, the polynomial

g—)ﬁ(al, ...,Qs) is a non-zero homogeneous element of R; if p # 1, H is not
of the form HY with H; € K[Xj,...,X,]. Take
OH
,31' = kia—Xi(Oq,.. .,as).

Since K is perfect, the polynomials 8H/9X; € K[X1, ..., X;] are not all zero
(Algebra, Chap. V, § 1, no. 3, Prop. 4); in view of the assumption made about
the k;, neither are the ;.

On the other hand, S can be identified with a graded algebra of poly-
nomials K[z, ..., z,] for appropriate indeterminates z1, . .., z, with suitable
degrees m; > 0. Let Dy be the partial derivative with respect to zx on S. Take
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dik = k; 1Dy (04). Then the equality (10) holds because its left-hand side is
Dy(H(e,--.,as)). On the other hand, if we put y; = mizy,..., ¥ = M.z,
the equality (9) follows from the equality (5) of no. 1.

2) Let b be the ideal of R generated by the (;; there exists a subset J of

I={1,2,...,s}

such that (8;)iecy is a minimal system of generators of b. Then J # @ since
b # 0. We shall deduce from (9) and (10) that, if ¢ € J, o; is an R-linear
combination of the a; for j # 4, which will contradict the minimality of

(ai,...,as) and will complete the proof.
There exist homogeneous elements 7;; of R (i € J, j € I-J) such that
B =L i (j€I-). (1)
Taking (11) into account, formula (10) gives
i%ﬂi (dik + j;J 'indjk> =0. (12)
Put
ik = di jidjk- 1
Uik dk_l_jEIZ—J,YJ dgk ( 3)
Thus
EZJ,B,’U,’)C =0. (14)

Write u;, = /\ZA dikazx, where the 6, belong to R. Relation (14) implies that
€

Z% Bidikx = 0 for all k and A. If one of the 6;;) had a non-zero homogeneous
i€

component of degree 0, the preceding equality would imply that one of the §;

(7 € J) is an R-linear combination of the others, contradicting the minimality

of (8i)ic3- Thus d;xx € Ry and consequently u;x € R4S for all ¢ and k. Thus,
S

there exist u;xp € S such that u;, = h21 Uikh O, in other words, by (13),

s
ik +j€Iz:—J’YJl ik = UikhCh ( )zk

Multiply both sides of (15);x by yx and add for ¢ in J fixed and k = 1,2,...,7;
in view of (9), we find that

S T
a; + jelzzJ Vi = }El & UikhYkOh -
Take the homogeneous components of degree k; of both sides. Since deg yi >
0, a; is an S-linear combination of the a; for j # 4. Since S is free over R and
a1,...,as € R, it follows that «; is an R-linear combination of the a; with
j # i (Commutative Algebra, Chap. I, § 3, no. 5, Prop. 9 d)).
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COROLLARY. With the assumptions and notation of Th. 8, the product of
the characteristic degrees of R is Card(G).

Indeed, rkg(S) = Card(G) (formula (6), no. 2). The characteristic degrees
of S are equal to 1. Then the corollary follows from no. 1, Prop. 2 (iii).

Lemma 2. Let K be a commutative field, V a finite dimensional vector space
over K, S = @n>0 S, the symmetric algebra of V, s an endomorphism of

V, and ™ the canonical extension of s to S,,. Then, with T denoting an
indeterminate, we have in K[[T]]

iﬁ(swﬂm = (det(1 — sT)) L.

Extending the base field if necessary, we can assume that K is algebraically
closed. Let (ey,...,e,) be a basis of V with respect to which the matrix of s
is lower triangular, and let Ay, ..., A, be the diagonal elements of this matrix.
With respect to the basis (ezl(l) . ..ei(r))i(1)+...+i(r)=n of S, ordered lexico-
graphically, the matrix of s(® is lower triangular and its diagonal elements
are the products )\11(1) N Thus

Tr(s™) = X AM i),
1)+ Fi(r)=n "

and consequently
z_:OTr(s("))T" = (Z_IO A;‘T”) (20 /\ZT"> .. ( 20 A:T")
=1-MDDT1 - XDt .1-)T)!
= (det(1 — sT))" 1.
Lemma 3. Let K, V and S be as in Lemma 2, G a finite group of automor-
phisms of V, q the order of G, and R the graded subalgebra of S consisting of

the elements invariant under G. Assume that K is of characteristic 0. Then
the Poincaré series of R, is

g gg(det(l —gT))~L.

Indeed, the endomorphism f = ¢~} EG g™ is a projection of S,, onto Ry,
g€
so Tr(f) = dimkSS. Thus, the Poincaré series of R is
(e
'y (Z (ﬂg“”)T") ,
geG \n=0

and it suffices to apply Lemma 2.



116 GROUPS GENERATED BY REFLECTIONS Ch. V

PROPOSITION 3. With the assumptions and notation of Th. 3, let H be the

set of pseudo-reflections belonging to G and distinct from 1. Assume that K
l

is of characteristic 0. Then Card(H) = Z:l(kz -1).
1=

By Prop. 3 of the Appendix, we can assume that K is algebraically closed.
For any g € G, let \i(g),...,Ai(g) be its eigenvalues. Since every g € G is
diagonalizable (Appendix, Prop. 2), g = 1 if and only if all of the \;(g) are
equal to 1, and g € H if and only if the number of \;(g) equal to 1is{ — 1
(we then denote by A\(g) the eigenvalue distinct from 1). Prop. 1 of no. 1 and
Lemma 3 prove that

!
q 1:[1(1 — Tki)—-l = E (det(l _ gT))—l (16)
= g€G
in K[[T]], and hence in K(T). Consequently, we have in K(T)
= 1 i
’ ﬁ (1 — Tk) S 1-T +9§‘ 1-X(g)T +g#1§;¢ﬂ det(1—gT)’

=1

which can be written

!
q-— _l:[l(l+T+---+Tki‘1)
1

(1-T) H(l + T+ + Thi-1) (17)

_y 1 a-o=

g 1 - X(g)T  g#1,9¢n det(1 — gT)’

!

It follows that g — H(l + T + -+ + T*~1) vanishes for T = 1, so
q = kikz ... ki, which we knew already by the Cor. of Th. 3. This granted, let

Q(T) be the polynomial (1-T)~(g— l:[l (14+T+---+T*~1)). Differentiating
!

the equality (1 — T)Q(T) =q — H (1 + T +---+ T*~1) and putting T = 1,

we see that —Q(1) is the value for T =1 of

l

4 (H(1+T+'~+T’°"_1)>

dt \ i=1

- _zz:l (L+2T+ -+ (ks - 1)T’“"2)J£I,'(1 + T4+ Thi™ 1))
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so
aw=- 5 S50 - (f1s) (5452,
Returning to (17), we have on the other hand
! 1
Q)= (:‘I=I1 kj) <g§1 1—_A(g))'
Thus,

Loki—1 1

zgl 2 g%%—l 1-Xg)’ (18)
Now the elements of G that leave fixed the points of a given hyperplane leave
stable a complementary line of the hyperplane (Appendix, Prop. 2), and so
form a cyclic subgroup G’ of G by Algebra, Chap. V, §11, no. 1, Th. 1. Let
t be the order of G’; the values of \(g) for g € G’ are 4,62,...,0t"1 with § a
primitive tth root of unity. We have ﬁ + # =1, so

———1 —1
geG7, g#1 1-X(g)
-1 = 1Card(HN G’). The equality (18) thus proves the proposition.

Remark. When K = R, G is a Coxeter group and H is the set of reflec-
tions belonging to G, we know (§3) that the elements of H are in one-to-one
correspondence with the walls of V.

PROPOSITION 4. With the assumptions and notation of Th. 3, assume that
K is of characteristic # 2. Then —1 € G if and only if the characteristic
degrees ky,...,k; of R are all even.

Let f be the automorphism of the algebra S that extends the automor-
phism —1 of V. Then f(z) = (—1)9°8?2 for all homogeneous z in S. Thus, if
—1 € G, every homogeneous element of odd degree of R is zero, and the k;
are all even. Conversely, if the k; are all even, every element of R is invariant
under f, and Galois theory shows that —1 € G.

4. ANTI-INVARIANT ELEMENTS

We retain the assumptions and notation of Th. 3, and assume that K is of
characteristic 0. An element z of S is said to be anti-invariant under G if

9(2) = (detg) 'z

for all g € G.
Let H be the set of pseudo-reflections belonging to G and distinct from
1. For all g € H, there exist e, € V and f; € V* such that

g(x) =z + fy(x)eg, forallz e V.
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PROPOSITION 5. (i) Let D be the element HH eg of S. The elements of S
g€

which are anti-invariant under G are the elements of RD.

(ii) Identify S with the polynomial algebra K[Xi,...,X;] by choosing a
basis (X1,...,X;) of V, and let (P1,...,P;) be algebraically independent ho-
mogeneous elements of S generating the algebra R (Th. 3). Then the jacobian

J =det (%) is of the form AD, where A € K*.

a) With the notation in (ii), we have
dPi AdPa A ... AdP; =JdX; AdXa A ... ANdX,
so, for all g € G,

g(J)(det g)dX1 A ... AdX; = g(J)d(gX1) A ... Ad(gX))
=g(dP1A...AdP;)) =dP1 A...AdP; =JdX1 A ... NdX],

hence J is anti-invariant under G. On the other hand, the field of fractions
N of S is a Galois extension of the field of fractions E of R (no. 2); if A is
a derivation of E with values in an extension field 2 of N, A extends to a
derivation of N with values in £2 (Algebra, Chap. V, § 16, no. 4, Th. 3); since
the P; are algebraically independent, it follows that dP; A...AdP; # 0, hence
J#0.

b) Let z be an element of S anti-invariant under G. We show that z is
divisible by D in S. Let a be a non-zero vector in V. The elements of G
that leave Ka stable leave stable a complementary hyperplane L (Appendix,
Prop. 2); an element of G leaving Ka stable is 1 or a pseudo-reflection with
vector a if and only if it induces 1 on L; the pseudo-reflections with vector a
belonging to G thus constitute, together with 1, a cyclic subgroup G’ of G;
let t be its order. There exists a basis (Xi,...,X;) of V such that a = Xy,
Xp €L,...,X; €L, and 2 can be identified with a polynomial P(Xy,...,X;)
with coefficients in K. From g(z) = (detg) ™'z for g € G/, we see that X; only
appears in P(Xy,...,X;) with exponents congruent to —1 modulo ¢. Thus,
P(Xi,...,X;) is divisible by Xi_l = a*~!. Now D is, up to a scalar factor,
the product of the a*~! for those a € V such that ¢ > 1, and these elements
of S are mutually coprime. Since S is factorial, z is divisible by D.

¢) By a) and b), J is divisible by D in S. Now

l
degJ = ;(ki —1) = Card(H)

(Prop. 3), so degJ = degD, hence J = AD with A € K. Since J # 0, A\ € K*.
This proves (ii).

d) Parts a) and ¢) of the proof show that D is anti-invariant under G.
Next, if y € R, it is clear that yD is anti-invariant under G. Finally, if z € S
is anti-invariant under G, we have seen in b) that there exists y € S such that
z = yD. Since S is integral, y € R. This proves (i).
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*5. COMPLEMENTS*

Lemma 4. Let K be a commutative field, V a finite dimensional vector space
over K, G a finite group of automorphisms of V whose order q is invertible
wm K, S the symmetric algebra of V, and R the subalgebra of S consisting of
the elements invariant under G. A prime ideal B of height 1 of S is ramified
over p = BN R (Commutative Algebra) if and only if there exist a non-zero
element a of V and a non-zero element f of V* such that B = Sa and the
pseudo-reflection s, 5 belongs to G. The decomposition group G%(B) is then
the subgroup of elements of G leaving Ka stable, and the inertia group GT(B)
18 the cyclic subgroup Hy, of G consisting of the pseudo-reflections of G with
vector a. The residue field S(B) of S at B is separable over the residue field
R(p) of R at p, and the ramification indezx e(B/p), equal to the coefficient
of B, augmented by 1, in the divisor div(Dg/g) of the different, is equal to
Card(H,).

To say that B is ramified over R means that its inertia group GT(B) does
not reduce to the identity, in other words that there exists g # 1 in G such
that g(z) = z (mod. B) for all z € S. Since S is a factorial ring, B is a
principal ideal Sa, and a must divide all the elements g(z) — z (2 € S); now,
for z € V, these elements are homogeneous of degree 1 and are all non-zero
(since g # 1); thus, a must be homogeneous of degree 1, in other words a € V.
Then there exists a linear form f on V such that g = s, 5. Conversely, if g is a
pseudo-reflection s, ¢ different from 1, then g(z) = z (mod. Sa) for all z € S,
so g belongs to the inertia group of the prime ideal B = Sa. This proves the
first assertion of the lemma and the characterizations of GZ(B) and GT(B).
Since ¢ is coprime to the characteristic p of K (which is also that of S(B)),
the extension S(B) of R(p) is separable (Commutative Algebra, Chap. V, §2,
no. 2, Cor. of Prop. 5). The equality e(B/p) = Card(H,) follows from this
(Commutative Algebra). Since e(B/p) is coprime to p, the coefficient of B in
div(Dg/R) is e(B/p) — 1 (Commutative Algebra). This proves the lemma.

Lemma 5. Let K be a commutative field, S a graded polynomial algebra over
K, and R a graded subalgebra of S. Then S is a free graded R-module (Algebra,
Chap. II, § 11, no. 2) if and only if the following two conditions are satisfied:
a) R is a graded polynomial algebra over K;
b) if (o1, ..., as) s a system of generators of the K-algebra R consisting of
algebraically independent homogeneous elements, this system is an S-regular

sequence’®.

4 In this number, we use results from chapters in preparation in the book on
Commutative Algebra. We indicate them by the symbol “Commutative Algebra”.
® This means that, for all ¢ € {1,2,..., s}, the canonical image of a; in the ring

S/(Soa + - - - + Sai-1)

is not a zero divisor in this ring.
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When S is an R-module of finite type, b) is a consequence of a).
See Commutative Algebra for the proof.

THEOREM 4. Let K be a commutative field, V a finite dimensional vector
space over K, S the symmetric algebra of V, G a finite group of automor-
phisms of V, and R the subalgebra of S consisting of the elements invariant
under G. Assume that ¢ = Card G is invertible in K. The following conditions
are equivalent:

(i) G 1is generated by pseudo-reflections;

(ii) S is a free graded R-module;

(iii) R is a graded polynomial algebra over K.

The equivalence of (ii) and (iii) follows from no. 2 and Lemma 5. The
implication (i) = (ii) follows from Th. 1.

We show that (iii) = (i). Let G’ be the subgroup of G generated by
the pseudo-reflections belonging to G, and let R’ be the subalgebra of S
consisting of the elements invariant under G’. We have R C R’ C S. By
Lemma 4, div(Dg/gr) = div(Dg/r’), so div(Dgr//r) = 0. Assume then that R
is a graded polynomial algebra. Since this is also the case for R’ (since G’
is generated by pseudo-reflections), Lemma 5 shows that the R-module R’
admits a homogeneous basis (Q1, ..., Qm); let ¢; = deg(Q;). Put

d = det(Trr//r(Q:iQj)), cf. Algebra, Chap. IX, §2.

The fact that div(Dg//r) is zero shows that div(d) = 0 (Commutative Alge-
bra), which means that d belongs to K*. On the other hand Trg//r(Q:Q;)
is a homogeneous element of degree g; + ¢;, and d is homogeneous of degree
2;%. Thus, Zi:qi = 0, i.e. g; = 0 for all 4, which means that R’ = R, and

so G’ = G by Galois theory. This proves that G is generated by pseudo-
reflections. Q.E.D.

Remarks. 1) Under the assumptions of Th. 4, the product of the character-
istic degrees of R is ¢ (formula (6) and Prop. 2 (iii)), so they are coprime to
the characteristic of K. This was asserted in no. 3.

2) If we do not assume that Card(G) is invertible in K, we still have the
implications (ii) <= (iii) (cf. Lemma 5) and (ii) => (i) (cf. Exerc. 8); but
the implication (i) = (ii) is no longer true (Exerc. 9).

PROPOSITION 6. The assumptions and notation are those of Th. 4. Let H
be the set of pseudo-reflections belonging to G and distinct from 1. Assume
that H generates G. For all g € G, put g(z) = = + fy(z)ey with eg € V,
fg € V*. Put

D= [le es.

(i) The different of S over R is the principal ideal SD.
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(ii) Identify Swith the algebraK[Xy,...,X;] by choosing a basis(Xy,...,X;)
of V, and let Py,...,P; be algebraically independent homogeneous elements
generating the algebra R. Then the jacobian J = det (g—%) is of the form AD
where A el K*.

(iii) gl(deg(P,-) —1) = Card(H).
(iv) The set of anti-invariant elements of S is RD.

Assertion (i) follows from Lemma 4. Assertion (ii) follows from the fact
that SJ is the different of S over R (Commutative Algebra). Assertion (iii) is
obtained by writing down the fact that the homogeneous polynomials D and
J are of the same degree. The proof of (iv) is then the same as that given in
no. 4 (proof of Prop. 5, parts b) and d))..

§6. COXETER TRANSFORMATION

In this paragraph, V denotes a real vector space of finite dimension [ and W
denotes a finite subgroup of GL(V), generated by reflections and essential
(83, no. 7). Provide V with a scalar product (z|y) invariant under W. Denote
by $ the set of hyperplanes H of V such that the corresponding orthogonal
reflection sy belongs to W.

1. DEFINITION OF COXETER TRANSFORMATIONS

An ordered chamber relative to W is a pair consisting of a chamber C deter-
mined by $ and a bijection ¢ — H; from {1,2,...,l} onto the set of walls of
C (cf. §3, no. 9, Prop. 7).

DEFINITION 1. The Cozeter transformation determined by an ordered cha-
mber (C, (H;)1<i<t) is the element ¢ = sy, SH, -..Su, of W.

PROPOSITION 1. All Cozeter transformations are conjugate in W.

Since W permutes the chambers determined by $ transitively (§ 3, no. 2,
Th. 1), we are reduced to proving the following: let (C, (H;)1<i<i) be an
ordered chamber and m € S;; then sy, su, ...su, and SHp(1)SHp(ay - - - SHyqy
are conjugate in W. Taking into account §4, no. 8, Prop. 8, this will follow
immediately from the following lemma:

Lemma 1. Let X be a finite forest, and x — g, a map from X to a group I
such that g, and g, are conjugate whenever x and y are not linked in X. Let
T be the set of total orderings on X. For all § € T, let pe be the product in

I" of the sequence (9z)zex defined by . Then the elements pe are conjugate
i I
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1) We proceed by induction on n = Card X. The case n = 1 is immediate,
so assume that n > 2. There exists in X a terminal vertex a (Chap. IV,
Appendix, no. 3, Prop. 2). Let b € X-{a} be a vertex linked to a if one
exists; if a is not linked to any vertex in X - {a}, let b in X~ {a} be arbitrary.
In all cases, g, commutes with g, for x # b. Let n € T be such that a is the
largest element of X and b the largest element of X~ {a}; we let £ € T and
prove that pe, p, are conjugate.

2) Assume first that, for &, a is the largest element of X and b the largest
element of X~ {a}. Let X' be the full subgraph X-{a}, which is a forest.
Define a map = — g}, from X' to I" by putting g, = g, if x # b, g, = gv9a-
Let &, be the restrictions of £,7 to X’. The induction hypothesis applies,
so per and p,s are conjugate. But it is clear that p;s = p¢, p,y = py, proving
the lemma in this case.

3) Assume that a is the largest element of X for £. Let X; (resp. X3) be
the set of elements of X - {a} strictly larger (resp. smaller) than b; let &; be
the restriction of £ to X;. Then

D¢ = P¢19bPe29a = P€19b9aDPés

and this element is conjugate to pe,pe, gogo. We are thus reduced to case 2).

4) In the general case, let X3 (resp. X4) be the set of elements of X
strictly larger (resp. smaller) than a; let £; be the restriction of £ to X;. Then
D¢ = PesJaPey, and this element is conjugate to pe, e, go. We are thus reduced
to case 3).

It follows from Prop. 1 that all the Coxeter transformations are of the
same order h = h(W). This number is called the Cozeter number of W.

Remark. Let Wy,...,W,, be essential finite groups acting in the spaces
Vi,..., V,, and generated by reflections. Let C; be a chamber relative to W;.
Let W be the group W; X - -- X W,,, acting in the space Vi X - -+ X V,,,. Then
Ci x ---x C,y, is a chamber relative to W. The Coxeter transformations of W
defined by C are the products cicz . . . ¢m, where c; is a Coxeter transformation
of W; defined by C;.

2. EIGENVALUES OF A COXETER TRANSFORMATION

Since all Coxeter transformations are conjugate (no. 1, Prop. 1), they all have
the same characteristic polynomial P(T). Let h be the Coxeter number of W.

Then l
P(T) = I1 <T - exp2mmj) ,
j=1 h

where mi,mo, ..., m; are integers such that

OSm <me < -~ <my <h.
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DEFINITION 2. The integers my, ma, ..., m; are called the exponents of W.

Let C be a chamber determined by $, Hi,...,H; its walls, and put
8; = sy,. Denote by e; the unit vector orthogonal to H; and on the same
side of H; as C. By Prop. 2 of the Appendix of Chap. IV, we can assume
that the H; are numbered so that e, es, ..., e, are pairwise orthogonal and
€r+1,€r42,- .-, € are pairwise orthogonal. Then s’ = s1s5. .. s, is the orthog-
onal symmetry with respect to the subspace

V =H;NnHyN---NH,,
8" = 8y418r42 ... 8; is the orthogonal symmetry with respect to the subspace
V” = H«,-+1 er,-+2 [REEE nHl,

and ¢ = s's"” is a Coxeter transformation. Since (e1, ..., ¢e;) is a basis of V, V
is the direct sum of V' and V”.

We deduce first that 1 is not an eigenvalue of c. For if x € V is such that
c(z) = z, then §'(z) = s"(z), so z — §'(z) = z — s”(x) is orthogonal to V'
and V", and hence is zero. Thus, z = §'(z) = §"(z) € V' N V" = {0}.

Consequently,

O<mi<me<---<my < h. (1)

The characteristic polynomial of ¢ has real coefficients. Thus, for all j, the
power of T — expzz$z in P(T) is equal to that of T — expml:m—j). Hence

mj+mp—;=h (1<j<I). (2)

Adding the equalities (2) we obtain
1
m1+m2+-~-+ml:§lh. 3)

Lemma 2. Assume that W is irreducible and that dim'V > 2. With the pre-
ceding notation, there exist two linearly independent vectors z', 2" such that

(i) the plane P generated by 2',2" is stable under s’ and s";

(ii) §'|P and s"|P are orthogonal reflections with respect to Rz’ and Rz";

(iii) 2/, 2" € C, and P N C is the set of linear combinations of 2', 2" with
coefficients > 0.

Let (el,...,€!) be the basis of V such that (e’|e;) = 6;;. Then C is the open
simplicial cone determined by the e* (§ 3, no. 9, Prop. 7). It is clear that V' is
generated by e"t1, ... el and V" by el,...,e". Let q be the endomorphism of
V such that g(e!) = ey,...,q(e!) = e;. Its matrix with respect to (e!,...,e")
is Q = ((eilej)). We have (e;le;) < 0 for ¢ # j (§3, no. 4, Prop. 3). Since
W is irreducible, there does not exist any partition {1,2,...,i} = I; Ul
such that (e;le;) = 0 for ¢ € I; and j € Ip. Thus (§3, no. 5, Lemma 4) Q
has an eigenvector (ai,...,a;) all of whose coordinates are > 0; let a be the
corresponding eigenvalue. Put
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z:alel+-~+alel,
2" =aiet +---+ae" €V'NC,
2 =ape T+ 4t eV NG,
and let P be the plane generated by 2’ and 2”. Then P N C is the set of
linear combinations of 2’ and z” with coefficients > 0. The relation ¢(z) = az
l l
gives Zlajej = Zlaajej; scalar multiplying by e; (where k < r) gives
j= j=
!

ak+ 2 aj(ejlex) = aay; thus
j=r+1

T l
(a—1)2" = 2 <j_Z 1aj(ej|€k)) ek

k=1 =r4
> o3
k
= a; ejlex)e
2o (St
> >
jar1 2 k:l( Jl k)
l . !
=— 2 a;ed+ 2 aje;
Jj=r+1 Jj=r+1
!
i Y e
z +j=r+1aje]
Thus, (a—1)2" 42 is orthogonal to e!, ..., e", that is, to V”. Hence, s” leaves

stable the plane generated by z” and (a — 1)2” + 2/, that is, P. Similarly, s’
leaves P stable. Since 2’ € PNV’ and 2" € PNV”, §'|P and s”|P are the
reflections with respect to Rz’ and Rz".

THEOREM 1. Assume that W is irreducible. Then:

(i) ma =1, mlzh——l.

(ii) Card($) = 3ih.

We retain the preceding notation. The restriction of ¢ = s's” to P is the
rotation with angle 2(z”,2’) (§2, no. 5, Cor. of Prop. 6). Since c is of or-
der h, the h elements 1,c,...,c"! of W are pairwise distinct; the elements
s',s'c,...,s'c"! are thus pairwise distinct, and are distinct from the preced-
ing elements since c*|P is a rotation and s’c’|P is a reflection. The set

h—1

{1,¢,...,c" 18 sc,..., 81}

is the subgroup W’ of W generated by s’ and s, and induces on P the group
W’ generated by the orthogonal reflections with respect to Rz’,Rz2”. The
transform of C by an element of W’ is either disjoint from —C or equal to
—C. Thus, the transform of P N C by an element of W” is either disjoint
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from —(P N C) or equal to —(P N C). Hence, for a suitable orientation of

P, there exists an integer m > 0 such that (2”,2’) = Z- (§2, no. 5, Cor. of
Prop. 7). Moreover, the sets ¢'(C), for ¢ € W', are pairwise disjoint; the
sets ¢"'(P N C), for g¢” € W”, are thus pairwise disjoint; so W” is of order
2h. Hence m = h. By definition, ¢|P is a rotation with angle %’r, and so has
eigenvalues expzz—7r expw. This proves that m; =1,m; =h — 1.

The transforms of Rz’ and Rz"” by W’ are h lines Dy, ...,Dj of P, and
the points of P - (D;U- - -UD},) are transforms by the elements of W’ of points
of P N C. Thus, a hyperplane of §) necessarily cuts P along one of the lines
D,, and consequently is a transform by an operation of W’ of a hyperplane
of  containing Rz’ or Rz".

Now, any H € § that contains Rz’ is one of the hyperplanes Hy, ..., H,.
Indeed, let ey be the unit vector orthogonal to H and on the same side of H
as C. Then eg = A1e; + -+ + A\je; with the \; all > 0 (§3, no. 5, Lemma 6,
(1)). Now 0 = (en|2’) = Art1ar41 + -+ - + Niay, SO

Arp1=---=X=0, and ey = Ae;+---+ Are,.

Suppose that two of the \; were non-zero, for example A; and Ag; since
ej,...,e, are pairwise orthogonal, we would have

81(61-1) = —Xe1 + dgex + -+ Arep

and the coordinates of s;(eg) would not be of the same sign, which is absurd
(loc. cit.). Thus, ey is proportional to one of the vectors es,...,e., which
proves our assertion. Similarly, any H € § that contains Rz" is one of the
hyperplanes H,y1,...,H;.

The number of elements of §) containing Rz’ or R2” is therefore I.Ifhis
even, Card(§)) is thus equal to £1. If h is odd, Card($)) is equal to 252i+r, and
also to 2511+ (I—r); hencer = l—r,sor = £, and Card($) = 25 1l+2 4.

Remark. Retain the notation of the preceding proof. Let ¢’ be the C-linear
extension of ¢ to V®g C, and ¢” the restriction of ¢’ to P ®g C. From our
study of ¢|P, ¢ has an eigenvector = corresponding to the eigenvalue exp 5™ Zim
and this eigenvector does not belong to any of the sets D ®gr C, where D
denotes a line of P (since D is not stable under c). Now, for any H € 9, we
have seen that HN P is a line; thus, z ¢ H®gr C.

COROLLARY. Let Rqg be the set of unit vectors of V orthogonal to an element
of . If W is irreducible,
2 (afu)® = h(z|z) (4)
u€Rg
forallz € V.
Put f(z) = XF:{ (z|u)?. Tt is clear that f is a positive quadratic form
u€ERg

invariant under W, and non-degenerate since the e; form a basis of V. Since
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W is irreducible, there exists a constant 3 such that f(z) = B(z|z) (§2, no. 1,
Prop. 1). If (2;)1<i<i is an orthonormal basis of V for the scalar product (z|y),

then l

! !
Bl =Elﬂ(93i|$i) =z§1 flz) =2 2 (zilu)?

=1 u€ERy

= ET; 1 = Card(Ro) = 2Card($)) = hl.
u€Ro

Thus 8 = h, which proves (4).

PROPOSITION 2. If W is irreducible and h is even, the unique element of
W that transforms C to —C is c/2.

We use the notation in the proof of Th. 1. Since ¢|P is a rotation through
an angle QT", cM/? transforms 2’ to —2/, 2’ to —z", and hence 2’ + 2 = z to
—2z. Now z € C, so the chamber ¢"/?(C) is necessarily —C.

PROPOSITION 3. Assume that W is irreducible. Let uy,...,u; be homoge-
neous elements of the symmetric algebra S = S(V), algebraically independent
over R and generating the algebra of elements of S invariant under W (§5,
no. 3, Th. 3). If p; ts the degree of u;, the exponents of W are p1 —1,...,p—1.

Put V=V ®gr C, S =S(V') = S®r C, and extend the scalar product
on V to a hermitian form on V'. If ¢ is a Coxeter transformation of W, there
exists an orthonormal basis (X;)1<ig; of V' consisting of eigenvectors of ¢c®1
(Algebra, Chap. IX, §7, no. 3, Prop. 4); moreover, we can assume that, for
1 < 7 <1, X; corresponds to the eigenvalue exp@ of c®1. It is clear that
S’ can be identified with the algebra C[Xj,...,X)], and that we can write
u; ® 1 = f;(Xyq,...,X;), where ]3 is a homogeneous polynomial of degree
p; in C[Xy,...,X;]. Put D; = % and J = det(Dgf;). Recall (§5, no. 4,
Prop. 5) that J(Xi,...,X;) is proportional to the product in S’ of Card($))
vectors yx of V each of which is orthogonal to a hyperplane of . Since we can
assume that X; ¢ H® C for all H € § (Remark), the X; component of each
of the vectors yj is non-zero, so J(1,0,...,0) # 0. The rule for expanding
determinants now proves the existence of a permutation o of {1,2,...,l}
such that (D, (;)f;)(1,0,...,0) # 0 for all j. Since Dy(;)f; is homogeneous
of degree p; — 1, the coefficient of Xff_IX,(j) in f;(X1,...,X;) is non-zero.
Now f;(Xy,...,X;) is invariant under ¢® 1, and

- 24 i—1
(c®1)(XF 1Xcr(j)) = (eXPT(pj -1+ ma(j))) (X Xo())-

This proves that p; — 1+ m,(;) =0 (mod. h). Now h —m;) is an exponent
(formula (2)). Permuting the u; if necessary, we can assume that p; —1 = m;
(mod. k) for all j. Since p; —1 > 0 and m; < h, we have p; — 1 =m; + pjh
with p; an integer > 0. By §5, Prop. 3, we see that
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Card(9) = >

l l !
(pj—1) = Xom+h 2 ;.
j=1 Jj=1 j=1

l
Taking into account formula (3) and Th. 1 (ii), we obtain h '21 u; = 0, so
]=
u; = 0 for all j, and finally p; — 1 = m; for all j.
COROLLARY 1. If (m;)1<i<i 1S the increasing sequence of exponents of W,

the order of W is equal to (my + 1)(ma2 +1)...(my + 1).
This follows from the relations m; + 1 = p; and §5, Cor. of Th. 3.

COROLLARY 2. If ¢ is a Cozeter transformation of W,

21 -2
exp { =~ and exp 5

are eigenvalues of ¢ of multiplicity 1.

Otherwise, there would exist two non-proportional homogeneous invari-
ants of degree 2 in S, and hence two non-proportional quadratic forms on V*
invariant under W, contrary to §2, no. 1, Prop. 1.

COROLLARY 3. The homothety with ratio —1 of V belongs to W if and only
if all the exponents of W are odd. In that case, h is even and c/? = —1 for
any Cozeter transformation ¢ of W.

The first assertion follows from §5, no. 3, Prop. 4. Assume that the ex-
ponents of W are odd. Then h is even by formula (2), and

2irm; \ ? ,
exp z = exp(imm;) = —1;

h

thus ¢*/2 = —1 since c is a semi-simple automorphism of V (Algebra, Chap.
IX, §7, no. 3, Prop. 4).






APPENDIX
COMPLEMENTS ON LINEAR
REPRESENTATIONS

The following proposition generalizes Prop. 13 of Chap. 1, § 3, no. 8.

PROPOSITION 1. Let K be a commutative field, A a K-algebra, and V and
W two left A-modules that are finite dimensional vector spaces over K. If
there exists an extension L of K such that the (A ®k L)-modules V®k L and
W ®x L are isomorphic, then the A-modules V. and W are isomorphic.

a) Assume first that L is an extension of K of finite degree n. Since V®gL
and W ®k L are isomorphic as (A ®k L)-modules, they are isomorphic as A-
modules; but, as A-modules, they are isomorphic to V™ and W™, respectively.
Now V and W are A-modules of finite length; thus V (resp. W) is the direct
sum of a family (M]*)1<icp (resp. (N;)1<;j<i) of submodules such that the
M; (resp. N;) are indecomposable, and that two of the M; (resp. N;) with
distinct indices are not isomorphic (Algebra, Chap. VIII, §2, no. 2, Th. 1).
Then V™ (resp. W") is the direct sum of the M (resp. N;-lsj); it follows
(loc. cit.) that p = q and, after a suitable permutation of the N;, that M; is
isomorphic to N; and nr; is equal to ns; for 1 < 7 < p. Thus, V is isomorphic
to W.

b) Assume that K is an infinite field. The assumption implies that V
and W have the same dimension over K. Let (e;)1<igcm and (€})igigm be
bases of V and W over K, and (ay) a basis of A over K. An isomorphism
u: VL —> WQkL is a bijective L-linear map and at the same time an
(A ®k L)-homomorphism, in other words it satisfies the conditions

a u(e;) = u(axe;) for all A and all 4. (1)

Put aye; = %:'y,\ijej, axe;, = ;’yﬁ\ije;, where the vy;; and 'yﬁ\ij belong to K,
and u(e;) = Z{ije;, where the &;; belong to L. The conditions (1) can be
J

written

zj: &'ﬂf\jk = ; Trig€ik (2)

for all A4, k. By assumption, the homogeneous linear equations (2) have a
solution (&;;) € L™ such that det(&;;) # 0. Since the coefficients of the
system (2) belong to K, we know (Algebra, Chap. II, §8, no. 5, Prop. 6)
that this system also admits non-trivial solutions in sz; let E be the vector
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subspace of M,(K) = K™, not reduced to zero, formed by these solutions.
Let (c1)1<i<p be a basis of E, and put (§;;) = Zl:mcz for any matrix (§;;) € E;

then det(;;) is a polynomial P(7;,...,7n,) with coefficients in K. On the

other hand, we know (loc. cit.) that the solutions of (2) in L™ are of the
form ;ch, this time with {; € L; for such a solution, det(¢;;) is equal to

P(¢1,...,¢p). Granting this, if we had P(n1,...,mp) =0 for all ny,...7m, € K,
the coefficients of P would be zero since K is infinite; we would then have
P(¢1,...,¢p) =0 for all {3,...,{p € L, which is contrary to our assumption.
We can therefore find a matrix (£;;) € E such that det(¢;;) # 0, and the
corresponding linear map V — W is an isomorphism.

¢) General Case. Let {2 be an algebraically closed extension of L, and K
the algebraic closure of K in 2. The assumption implies that V ®k {2 and
W ®k {2 are isomorphic (A ®k 2)-modules. Since Kj is infinite, part b) shows
that V ®k Ko and W ®k Ky are isomorphic (A ®k Kp)-modules. Retaining
the notation in b), the system (2) admits a solution (&;;) € K6"2 such that
det(&;;) # 0. But the &;; all belong to some algebraic extension K; of finite
degree over K. The (A®k K;)-modules V®Rk K; and W®gkK; are isomorphic,
and the proof is completed by using a).

PROPOSITION 2 (Maschke). Let A be a ring with unit element, E a left
A-module, F a direct summand of E, G a group of finite order q, and p a
linear representation of G on E. Assume that q.1 is invertible in A and that
F is stable under G. Then there exists a complement of F in E that is stable
under G.

Let p be a projection of E onto F. For all x € E, put
f@)=q7" 2 p(s)"p(o(s)z).
seG

We have f(z) € F and f(y) =y for all y € F, so f is a projection of E onto
F. On the other hand, if t € G,

p(t)f(x) =q7" %3(; p(st™) " p(p(s)z)
=q* ga p(s) " p(p(st)x)

= f(p(t)z).

Thus f commutes with p(G), so Ker(f) is a complement of F stable under
G.

COROLLARY. Let G be a finite group of order q, and K a commutative field
whose characteristic does not divide q. Then the group algebra of G over K
is semi-simple.

Indeed, by Prop. 2, every module over this algebra is semi-simple.
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PROPOSITION 3. Let A be a commutative ring, M an A-module, G a finite
group acting on M, and A’ an A-module. Assume that the order q of G
is invertible in A. Let MC be the set of elements of M invariant under G.
Then the canonical homomorphism from MC ®a A’ to M @4 A’ defines an
isomorphism from M® ®a A’ onto the module (M ®4 A’)¢ of elements of
M ®a A’ invariant under G.

Indeed, let Q be the projection of M onto M® defined by Q(z) =
gt zg:g(m) for all z € M. If i denotes the canonical injection of M into

g

M, Qo is the identity map of M®, so (Q ® 1as) o (i ® 1a/) is the identity
map of MC ®4 A’. Since Q® 15/ = ¢! ZG(g ® 1a/), the image of 1 ® 14:
g€

is (M ® A’)C. On the other hand, i ® 1,/ is injective by what has been said
before.

Remark. The preceding proposition applies in particular when A’ is an A-
algebra. In that case, MG ®4 A’ is an A’-submodule of M @4 A’.






EXERCISES

§2.

1) Let K be a commutative ring with unit element, let E be an A-module,
and let E* be its dual. Denote by ¢ the canonical homomorphism from EQ E*
to End(E).

a) Any element distinct from 1 in End(E) of the form
ey =1 —p(z®Y"),

with z € E and y* € E*, is called a pseudo-reflection in E. Such an element s
is called a reflection if z and y* can be chosen so that (z,y*) = 2; show that
we then have s2 = 1 and s(z) = —z.

b) Let z € E, y* € E* be such that (z,y*) = 1. Show that E is the direct
sum of the submodule Kz generated by x and the orthogonal complement H
of y*. Show that Kz is free with basis , and that s = sz« is equal to 1 on
H and to —1 on Kz.

2) With the notation of Exerc. 1, show that det(szy«) =1— (z,y*) if Eis a
free K-module of finite type.

9 3) Let V be a complex Hilbert space with basis e1, ..., e;. For 1 < i <, let
s; be a unitary pseudo-reflection, with vector e;, such that s;(e;) = c;e;, with
¢; # 1; an element of V is invariant under s; if and only if it is orthogonal to
e;. Let W be the subgroup of GL(V) generated by the s;.

a) Let ¢ be an integer > 1. Show that every element of A"V invariant under
W is zero. (Argue by induction on [; if V' is the subspace of V generated by
e1,...,e_1, and if e is a non-zero vector orthogonal to V’, any element of
A"V can be written in the form a + (bAe), with a € A°V and be A\ V/;
if a + (b A e) is invariant under W, a and b are invariant under the subgroup
W’ generated by si, ..., 8,1, and the induction hypothesis applies.)

b) Assume that W is finite. Show, by using a), that, for any endomorphism
Aof V,
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> det(A —w) = Card(W).det(A)
weW

> det(1—Aw) = Card(W).
weW
Deduce that, for any A € End(V), there exists w € W such that Aw has no
non-zero fixed point.

c) Let I' be the graph whose set of vertices is (1,!]), the arrows being the
sets {¢,7} such that e; and e; are not orthogonal. Show that V is a simple
W-module if and only if I" is connected and non-empty.

d) Assume that V is a simple W-module. Show that the W-modules \'V
(0 < i < 1) are simple. (Show that there exists an integer j such that the
graph I'— {j} is connected. Argue by induction on I, and apply the induction
hypothesis to the subspace V' generated by the e;, i # j.) Show that these
modules are pairwise non-isomorphic®.

§3.

1) The notation and assumptions being those of no. 1, show that the chambers
relative to W are open simplices if and only if W is infinite and irreducible.
Show that E/W is compact if and only if W is a product of infinite irreducible
groups.

2) Let V be a finite dimensional real vector space equipped with a scalar
product, F a finite subgroup of the orthogonal group of V generated by
reflections, A a discrete subgroup of V stable under F, and W the group of
displacements of V generated by F' and the translations by a vector belonging
to A. Let $) be the set of hyperplanes H of V such that sy € F. Let R be the
set of elements of A orthogonal to an element of §).

a) W is generated by reflections if and only if R generates A.
b) In R? equipped with the scalar product ((z,y), (z/,y')) — zz’ + yy/, let

e = (1,0)’ €2 = <_%7?) y €3 = <_l _£> ) A; = Re;,

27 2
F the dihedral group generated by the sa,, and A the discrete subgroup of
R? generated by the e;, a subgroup that is stable under F. Show that W is
not generated by reflections.

3) Let V be a finite dimensional real vector space and W a finite subgroup
of GL(V) generated by reflections. Show that every element of order 2 of W
is a product of pairwise commuting reflections belonging to W. (Argue by
induction on dim(V), and use Prop. 2.)

6 This exercise, hitherto unpublished, was communicated to us by R. Steinberg.
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4) Let V be a finite dimensional real vector space, W a finite subgroup of
GL(V) generated by reflections, w an element of W, V' a vector subspace
of V stable under w, and k the order of the restriction w|V’ of w to V'.
Show that there exists © € W of order k, leaving V' stable, and such that
z|V' = w|V'. (Let W’ be the set of elements of W leaving fixed the points
of V'. This group is generated by reflections, and w permutes the chambers
relative to W’; deduce that there exists h € W’ such that wh leaves stable a
chamber of W’; show that we can take z = wh.)

9 5) Let V be a finite dimensional real vector space, W a finite subgroup of
GL(V) generated by reflections, C a chamber of W and S the set of walls of
C.If J C S, let Wy be the subgroup of W generated by the sy for H € J, and
let e(J) = (—1)C>40), Show that

1 e(J) (%)
Card(W)  jcs Card(Wj)

(Let (z|y) be a scalar product on V invariant under W, X the unit sphere of
V, and p a positive measure on X' invariant under W and of total mass 1. If
H € S, let Dy be the open half-space determined by H and containing C. Let
Eg = Dy N X. Then

(-O)nx = Hre]s(z —En),

S0
1

(W) p(CNx)= /ZHI;IS(I — By )du

=2 e(I)p (HQJ EH> .

Jcs
Conclude by remarking that HﬂJ Ey is the intersection with X' of a chamber
€

of Wj, and hence has measure equal to 1/Card(Wj).)
Recover formula (*) by means of Exerc. 26 ) of Chap. IV, §1 (put t =1
in the identity proved in the exercise in question).

6) a) Let K be a commutative field, V a vector space of finite dimension n
over K, ¢ a symmetric bilinear form on V, and N the kernel of ¢. Assume
that dimN = 1. Show that the kernel of the extension of ¢ to A" 'V is of
dimension n — 1.

b) Assume in addition that K = R and that ¢ is positive. Let (ey,...,e,) be
a basis of V, and a;; = ¢(e;, e;). Assume that a;; < 0 for ¢ # j. Assume that
there is no partition IUJ of {1,2,...,n} such that a;; = 0fori € 1,5 € J. Let
A;; be the cofactor of a;; in the matrix (a;;). Show that A;; > 0 for all ¢ and
J. (Let (1e1+- - - +nexn be a vector generating N, all of whose coordinates are
> 0. Show that every row and column of (A;;) is proportional to ({1, ..,¢n).
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Deduce that A;; = u¢;¢; for some constant . By considering the A;;, show
that u > 0.)

¢) Show that (i, ..., ¢, are proportional to v/Ai1,...,vVAnn.

7) Let q(&1,...,&n) = 2 a:;€:€; (as; = aji) be a degenerate positive quadratic
4

form on R™, such that a;; < 0 for ¢ # j. Assume that there is no partition
IUuJof {1,2,...,n} such that a;; =0fori€1,j € J.

a) Show that, if we put & = 0, we obtain a non-degenerate positive quadratic
form with respect to &1,...,&i—1,&i+1,---,&n-

b) Show that a;; > 0 for all i. (Let (¢1,...,(n) be an element of the kernel of
q, with ¢; > 0,...,(, > 0. Use the equality a1;(1 + - + an;{ = 0.)

c) Show that if we replace one of the a;; by some a;

< aij, the new form is
non-positive. (Use the equality Z a;;G ¢ =0.)

ij

8) Let (a;;) be a real symmetric matrix with n rows and n columns.
n
a) Put s = ;a,;k. Then, for all &,...,¢, € R,
1
;}2 aikgilk = zk: skéy — 3 lzlg aik (€ — &)

b) Let C1,...,¢n € R*. Put 2 (;aik = tp. Then
k3

C Cz Ck

(In a), replace & by % and ai by Gikair-)

2
%aikfiﬁk = Z i, _ ZCzCk aik (ﬁl £—k) .

¢) If there exist numbers (;,...,{, > 0 such that Zgazk =0 (k =
1,2,...,n), and if a;; < 0 for ¢ # j, then the quadratlc form Zatk@gk
is degenerate and positive. (Use b).)

d) Let iZjQij&-igj be a quadratic form on R"™ such that ¢;; < 0 for ¢ # j.

Assume that there is no partition IUJ of {1,2,...,n} such that ¢;; = 0 for
1 € I, € J. Then the form is non-degenerate and positive if and only if there
exist (1 > 0,...,(, > 0 such that Z(:iqik =0(k=1,...,n).

?
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§4.

In the exercises below, (W, S) denotes a Coxeter system. We assume that S is
finite; its cardinal is called the rank of (W, S). We identify W with a subgroup
of GL(E) by means of ¢ (cf. nos. 3 and 4).

1) Let E° be the orthogonal complement of E with respect to the form By.
Show that EO is the radical of the W-module E (Algebra, Chap. VIIL, § 6, no.
2), and that E/E° is the direct sum of m absolutely simple, pairwise non-
isomorphic modules, where m is the number of connected components of the
graph of S.

2) a) Let I, be the set of extremal generators of the cone w(C) and let A
be the union of the I, for w € W. Show that A, equipped with the set
{I'w]w € W}, is a building (Chap. IV, §1, Exerc. 15). Show that the map j
from the apartment Ag associated to the Coxeter system (W,S) (Chap. IV,
§1, Exerc. 16) to A that transforms the point wW®) of Ag (for w € W and
s € S) to the generator w(Re;), is an isomorphism from Ag to A, compatible
with the action of W. Show that, if t = wsw™!, with w € W and s € S, the
image under j of the wall L; defined by ¢ (resp. of a half of Ay defined by L;)
(loc. cit.) is the set of elements of A contained in the hyperplane (resp. the
closed half-space) that is the transform by o*(w) of the hyperplane e; = 0
(resp. of one of the closed half-spaces es > 0 or e5 < 0).

b) Show that W is finite if and only if there exists an element wg € W such
that wo(C) = —C. This element wy is then unique and is the longest element
of W (use Exerc. 22 of Chap. IV, §1). Show that in that case j(—a) = —j(a)
for all a € Ag (cf. Exerc. 22 ¢) of Chap. IV, §1).

¢) Show that W is finite  if and only if the cone U formed by taking the union
of the cone closures w(C) for w € W is equal to the whole of E* (if W is
finite, use b) and the convexity of U. If U = E*, consider an element w € W

such that w(C) N (—C) # @ and show that w(C) = —C).

d) Let H be a finite subgroup of W. Show that there exists a subset X of S

such that Wx is finite and contains a conjugate of H. (Argue by induction

on Card(S). Let z € C and T = hZ;{ h(z). Show, by using c) above, that W is
€

finite if T = 0. If T # 0, there exist w € Wand Y C S, Y # S, such that w(ZT)

belongs to Cy (in the notation of no. 6), and hence H C w~'Wvyw; apply the
induction hypothesis to Y.)

3) Assume that (W, S) is irreducible.
a) Show that the commutant of the W-module E reduces to the homotheties.

b) Show that the centre of W reduces to {1} if W is infinite or if W is finite
and the longest element wy (cf. Exerc. 2) is # —1. If W is finite and wo = —1,
the centre of W is {1, wo}.
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¢) Show that any element w # 1 of W such that wSw™! = S transforms C
to —C (show that w(es) = —eyu-1, first for some s € S, and then for all
s € S). Deduce (Exerc. 2) that such an element exists only if W is finite and
that it is then equal to wg.

4) Assume that Card(S) = 3. If s € S, let a(s) = m(u,v), where {u,v} =
S—{s}. Let A= Zs 1/a(s).
s€

a) If A > 1, show that By is non-degenerate and positive (in which case W
is finite).
b) If A =1, show that By is degenerate and positive.

c) If A < 1, show that By is non-degenerate and of signature (2,1) (cf.
Algebra, Chap. IX, §7, no. 2).

Show that, in case a), the order ¢ of W is given by the formula ¢ =
4/(A — 1) (use Exerc. 5 of §3).

5) Let A be the subring of R generated by the numbers 2. cos(w/m(s, s)).
Show that A is a free Z-module of finite type, and that the matrices of the
o(w) for w € W have their coefficients in A. Deduce that the coefficients of
the characteristic polynomials of the o(w) are algebraic integers.

9 6) a) Let m be an integer > 2, or +00. Show that 4 cos® = € Z is equivalent
tom € {2,3,4,6,+00}.

b) Let I' be a lattice in E, i.e. a discrete subgroup of E of rank dim E. Show
that, if I" is stable under W, the integers m(s, s’) for s # s all belong to the
set {2,3,4,6,+00}. (Observe that Tr(o(w)) € Z for all w € W; apply this
result to w = ss’, and use a) above.)

¢) Assume that m(s,t) € {2,3,4,6,,+00} for s #t € S. A family (z;)ses of
positive real numbers is called radical if it satisfies the following conditions:

m(s,t) =3 = 1, = 34
m(s,t) =4 =z, = V2.2, or 7, = V2.2
m(s,t) =6 = x5 = V3.2, or 74 = V3.2,

m(s,t) = +oo =z, = 14 Or Ty = 2T; OF Ty = 2T5.
If (x5)ses is such a family, put as = zse5. Show that
os(at) = ap — n(s,t)as, with n(s,t) € Z.
Deduce that the lattice I" with basis (a)ses is stable under W.

d) With the assumptions in ¢), suppose that the graph of (W, S) is a forest.
Show that in that case there exists at least one radical family (z;). (Argue
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by induction on Card(S); apply the induction hypothesis to S—{so}, where
So is a terminal vertex of the graph of S.)

e) With the assumptions in c), suppose that the graph of (W, S) is a circuit.
Let n4 (resp. ng) be the number of arrows {s, ¢} of this graph whose coefficient
m(s,t) is equal to 4 (resp. 6). Show that a radical family exists if and only
if ny and ng are both even. If this condition is not satisfied, show that no
lattice of E is stable under W (if S = {s1,..., 8}, with s; linked to s;4+1 for
1<i< n-—1,and s, linked to s1, put ¢ = 571 ...s, and show that Tr(o(c))
is not an integer).

7) Assume that (W, S) is irreducible and that By is positive.

a) Show that, for any subset T of S distinct from S, the group Wr is finite
(use Th. 2 as well as Lemma 4 of §3, no. 5).

b) Show that, if Card(S) > 3, the m(s,s’) are all finite.

¢) Assume that W is infinite. Show that, if T C S, T # S, the group o(Wr)
leaves stable a lattice in RT. Deduce that, if Card(S) > 3, the m(s,s'),s # &,
all belong to the set {2,3,4,6} (use Exerc. 6).

8) Let s € S and w € W. Show that, if I(ws) > l(w), the element w(es) is
a linear combination with coefficients > 0 of the e; for t € S; show that, if
l(ws) < l(w), w(es) is a linear combination with coefficients < 0 of the e;.
(Apply property (P,) of no. 4 to w™!, and argue by polarity.)

9) Show that the intersection of the subgroups of W of finite index reduces
to the identity element (use Exerc. 5). Deduce that there exists a subgroup
of W of finite index that contains no element of finite order other than the
identity element. (Use Exerc. 2 d).)

9 10) Let G be a closed subgroup of GL(E) containing W. Assume that G
is unimodular (Integration, Chap. VII, §1, no. 3). Let D be a half-line of E*
contained in C, and let Gp be the stabiliser of D in G.

a) Let A be the set of elements g € G such that g(D) C C. Show that A is
open, stable under right multiplication by Gp, and that the composite map
A — G — W\G is injective, W\G denoting the homogeneous space of right
cosets of G with respect to W.

b) Let u be a Haar measure on G. Show that, if u(A) is finite, the subgroup
Gp is compact. (Let K be a compact neighbourhood of the identity element
contained in A; show that there exist finitely many elements h; € Gp such
that every set of the form Kh, with h € Gp, meets one of the Kh;; deduce
that Gp is contained in the union of the K~1.K.h;, and hence is compact.)

c) Let v be a non-zero positive measure on W\G invariant under G. Show
that, if »(W\G) < oo, then Gp is compact.
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9 11) Let H be the subset of R™ consisting of the points z = (2o, ..., Zn-1)
for which the form

B(z) = —zi+2i+---+22_,

is < 0, and let PH be the image of H in the projective space P,_1(R). Let
G be the orthogonal group of the form B.

a) Show that PH is a homogeneous space of G, that the stabiliser of a point
is compact, and that G acts properly on PH.

b) Let w and {2 be the differential forms on H defined by the formulas

n—1

w = Z{)(—l)ixidxo AN ANdxi—1 ANdZigp1 A - ANdTp—1
=l
w
=
(=B(z))"/2

Show that 2 is the inverse image under the canonical projection 7 : H — PH
of a differential form {2 on PH. Show that the positive measure v associated
to £2 (Differentiable Varieties R, 2nd part) is invariant under G, and that it
is the only such measure, up to a scalar factor.

¢) Let C be an open simplicial cone with vertex 0 in R"™ (§ 1, no. 6). Assume
that C is contained in H, and denote by PC the image of C under = : H — PH.
Show that, if n > 3, then v(PC) < oo (identify PH with the subspace of

n—1
R™ ! consisting of the (21,...,%,_1) such that Z z? < 1, and determine

the measure corresponding to v on this subspace). Show that PC is relatively
compact in PH if and only if C is contained in H.

9 12) Assume that the form z.y = Bym(z,y) is non-degenerate and that W
is infinite. Identify E with its dual E* by means of Bys; in particular, denote
by (e%) the basis of E dual to the basis (e;), and by C the interior of the
simplicial cone C generated by the eX. Let G be the orthogonal group of By,
and let u be a Haar measure on G; the group G is unimodular and contains

W.

a) Show that, if ¥(W\G) < oo (where v is a non-zero positive measure
invariant under G), the form By is of signature (n — 1, 1), with

n = dim(E) = Card(S),

and that .2 < 0 for all x € C.

(Let z € C be such that z.z # 0, and let L, be the hyperplane orthogonal
to z. Show, by using Exerc. 10, that the restriction of By to L. is either
positive or negative; show that the second case implies that By is of signature
(1,m — 1) and that this is impossible. Deduce that z.z < 0 for all z € C, and
hence z.z < 0 since C is open.)
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b) Conversely, assume that By is of signature (n — 1,1) and z.z < 0 for all
z € C (in which case W, or (W, S), or the corresponding Coxeter graph, is
said to be of hyperbolic type). Let H be the set of z € E such that z.z < 0,
and let H, be the connected component of H containing C. Show that H is
the disjoint union of Hy and H_ = —H,, and that H_ is contained in the
simplicial cone generated by (es)ses (use the fact that H_ is the polar of
H.). Show that H; and H_ are stable under W.

¢) Retain the notation and assumptions of b). Let f be the linear form on E
defined by f(es) =1 for all s € S. If z € H, put ¢(z) = f(z)?/(z.z). If PH
denotes the image of the cone H in the projective space P(E), the function
@ defines a function ¢ on PH. Show that the map

@ :PH —]—00,0]

is proper. Deduce that, for all x € H,, the functions w — @(w.z) and
w — f(w.z) attain their maximum for a value w; € W (use the fact that
G acts properly on PH, cf. Exerc. 11, and that W is discrete in G); show
that these properties are equivalent to w;(z) € C. Deduce that CNHy is a
fundamental domain for the action of W in H,, and that the image of this
fundamental domain in PH has finite measure for the invariant measure v
on PH (use Exerc. 11). Conclude that v(W\G) < oo. Show that W\G is
compact if and only if C is contained in Hy, i.e. if ef.et < 0 for all s € S (in
which case W, or (W, S), or the corresponding Coxeter graph, is said to be
of compact hyperbolic type).

9 13) Show that (W, S) is of hyperbolic type (cf. Exerc. 12) if and only if the
following two conditions are satisfied:

(H;) The form By is not positive.

(H2) For any subset T of S distinct from S, the form Byyr) associated to
the Coxeter system (W, T) is positive.

(If (W, S) is of hyperbolic type, we have seen that eX.eX < 0 for all s € S,
the notation being that of Exerc. 12. The restriction of By to the hyperplane
E(s) orthogonal to e’ is thus > 0; since E(s) is generated by the e; for
t # s, (Ho) follows. Conversely, assume that (H;) and (H) are satisfied; let
T = ;ases be an element of E such that z.x < 0; let x4 (resp. z_) be the

sum of the ases for which as is > 0 (resp. < 0); show that either z,.z4 <0
or z_.xz_ < 0. If V denotes the open simplicial cone generated by the es, and
H the set of x € E such that .z < 0, deduce that there exists a connected
component Hy of H that meets V; by using (Hz), show that Hy does not
meet the walls of V, so Hy C V. Deduce that the form By(z,y) = z.y is
non-degenerate of signature (n—1,1), and that C is contained in —Hjy, hence
the fact that (W, S) is of hyperbolic type.)

14) Show that (W, S) is of compact hyperbolic type (Exerc. 12) if and only
if the following two conditions are satisfied:



142 GROUPS GENERATED BY REFLECTIONS Ch. V

(H1) The form By is not positive.

(HC) For any subset T of S distinct from S, the group W is finite (i.e.
the form By is non-degenerate and positive).

(Use Exercs. 12 and 13.)

In particular, a Coxeter system of hyperbolic type of rank 3 is of compact
hyperbolic type if and only if the m(s, s’) are all finite (cf. Exerc. 4).

9 15) *a) Show that the nine Coxeter graphs below” are of compact hyperbolic

type, and that they are, up to isomorphism, the only graphs of rank 4 with
this property (use the classification of Chap. VI, §4):

. 5 . ot 5 5 5 :>5

nEnRREnEN

b) The same question for rank 5, the list consisting of the following five graphs:

c¢) Show that there is no graph of compact hyperbolic type of rank > 6.,

16) *Show that any Coxeter graph of hyperbolic type of rank > 4 that has
an edge with coefficient 6 is isomorphic to one of the following eleven graphs
(which are non-compact and of rank 4):

6
—ob o 5 o 53>LOI>.~,—¢

7 In these graphs, any edge that has no label next to it is taken to have coefficient
3 (cf. Chap. IV, §1, no. 9).
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17) *Show that the hyperbolic Coxeter graphs of higher rank are the following
three graphs (which are of rank 10):

9§ 18) Assume that (W,S) is of hyperbolic type, and that W leaves stable a
lattice I of E. Let G be the orthogonal group of By, and let G(I') be the
subgroup of elements g € G such that gI" = I'. Show that G(I) is a discrete
subgroup of G. Show that W is a subgroup of finite index of G(I") (use the
fact that the measure of W\G is finite).

*If (W,S) is actually of compact hyperbolic type, show that the corre-
sponding Coxeter graph is isomorphic to one of the following (use Exercs. 4,
6 and 15):

-.
é Go 06 60 gv;; ‘;v;and

Show that all the groups corresponding to the graphs of Exerc. 16 (with
the exception of the last four) leave stable a lattice (use the method of Exerc.
6)..

19) Let (W, S) be the Coxeter system corresponding to the graph

5

o——O0—O0——0

This is a system of compact hyperbolic type (cf. Exerc. 15). The coefficients
of the form By with respect to the basis (e;) belong to the subring A of the
field Q(+/5) consisting of the elements of this field that are integers over Z.

a) Let o be the embedding of K into R that maps v/5 to —v/5. Show that
the transform o(By) of the form By by o is non-degenerate and positive.

b) Let G be the orthogonal group of By, and let G, be that of o(By). Let
Ga be the subgroup of G consisting of the elements whose matrices with
respect to (es) have coefficients in A. Show that Ga can be identified with a
discrete subgroup of G x G, and then, using a), show that G, is a discrete
subgroup of G.
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¢) Show that W is a subgroup of G4 of finite index.
d) Prove analogous results for the other graphs in Exerc. 15 (the field Q(+/5)
sometimes being replaced by Q(\/§), with the exception of the graph

0O 4 O

treated in Exerc. 18, and of the graph®

A

9 20) For every subset {s, s’} of S such that m(s,s’) = oo, let 7(s,s’) be a
real number < —1. Equip E with the bilinear form B, such that

B, (es,esr) = Bum(es, es) = —cos ——— if m(s,s’) # oo

m(s, s’)

B, (es,es) =1(s,5") if m(s,s’) = oo.

We define, as for By, the reflections o with vector ey, leaving the form B,
invariant.

a) Show that there exists a unique homomorphism o, : W — GL(E) such
that o,.(gs) is equal to the reflection o, defined above.

b) Show that the assertions in Prop. 4, Th. 1, its Corollaries, and Lemma 1
remain true for o,.

§5.

1) Determine the algebra of symmetric invariants of a finite dihedral group
(for its canonical representation of dimension 2, cf. §4, no. 2).

2) Let A be a principal ring, E a free A-module of finite rank [, and G a finite
subgroup of GL(E). Assume the following:

(i) If ¢ = Card(G), the element ¢.1 of A is invertible.
(ii) G is generated by pseudo-reflections in E (i.e. by elements s such that
(s — 1)(E) is a monogenic submodule of E, cf. §2, Exerc. 1.)

8 As E. Vinberg has shown, the group W corresponding to this last graph is not a
subgroup of G of “arithmetic” type. The same situation arises for various other
graphs of hyperbolic type (non-compact, this time), notably for the last four in
Exerc. 16.
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Let S(E) be the symmetric algebra of E, and let S(E)® be the subal-
gebra of S(E) consisting of the elements invariant under G. Show that, for
any homomorphism from A into a field k, S(E)¢ ® k can be identified with
S(E ® k)©. Deduce, by applying Th. 4, that S(E)€ is a graded polynomial
algebra over A.

9 3) Let K be a field of characteristic zero, V a vector space of finite dimension
l over K, and G a subgroup of GL(V) generated by pseudo-reflections. Put
g = Card(G); denote by S (resp. L) the symmetric algebra (resp. exterior
algebra) of V. If z € V, denote by z (resp. z’) its canonical image in S (resp.
L).

a) Let E =S ®L be the tensor product of S and L. Show that there exists a
unique derivation d on E such that dr = 2’ and dz’ =0 for all z € V.

b) Let SC be the algebra of symmetric invariants of G and let Py,...,P; be
homogeneous elements of S¢ such that S¢ = K[Py, ..., P;]. For every subset
I={4,...,4-} of (1,1) with 43 < --- < i, put

Wi = dPi1 . ~dPir~

Show that the wy are linearly independent over S, and that they belong to
the subalgebra EC consisting of the elements of E invariant under G. Deduce
that, for all w € EC, there exist a,c; € S¢, with a # 0, such that

aw = ; Ciwry.
c) Show that every element of EC contained in S ® /\IV is of the form
c.dP; ...dP;, with ¢ € S®. (Apply Prop. 5.)

d) Show that the wy form a basis of the S®-module EC. (With the notation
in b), multiply both sides of the relation aw = ZI: ciwy by an element wy, and

apply c); deduce that, if I is the complement of J, a divides cr; hence® the
fact that the w; generate EC.)

e) Let S,, (resp. L,,) be the homogeneous component of S (resp. L) of degree
n (resp. m). Put

Enm =52 ®Lm, ES,,
aX,Y)= 2 apmX Y™

E¢NEsm, anm =dim ES

n,m»

n,m2=0
By using d), prove the formula
l i—1
1+ Y.XP:
o) =l 55—

where p; = deg(P;).

® For more details, see L. SOLOMON, Invariants of finite reflection groups, Nagoya
Math. Journal, v. XXII (1963), p. 57-64.
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f) If g € G, let Try, m(g) be the trace of the automorphism of E,, ., defined

by g; put
Tr(X,Y)(g) = §> o Trp,m(g)X"Y™.

Y=

Show that
_det(14+Yg)

Tr(X,Y)(9) = Ger(i =Xg)

g) Let ¢ = Card(G). Show that

1
=2 Tr(X,Y)(g) = a(X,Y),
- LI Y)(9) =a(X, V)
ie.
1« det(1+Yg) 4 1+Y.XP1
g geG det(l —Xg) =1 1—Xp
(Use the following result: if G acts on a finite dimensional vector space E,
the dimension of the space of elements of E invariant under G is equal to

1
2 Tr .
P g%%} E(9)-)
What does this formula give for Y = 07

h) For any integer p > 0, let Hy, be the set of elements g € G that have 1 as
an eigenvalue with multiplicity p. Let h, = Card(H,). Prove the formula

l !
> kTP = [ (p; — 1+ 7).
p=0 =1
(In the formula in g) above, replace Y by —1+ T(1 — X) and then put X =1
in the result. If g € H,, the term Tr(X,Y)(g) becomes T?.)

ﬁ[ 4) *Let Gl = SL3(F2)

a) Show that G is a non-abelian simple group of order 168, containing 21
elements of order 2.

b) Show that the degrees of the irreducible complex representations of G; are
1,3,3,6,7,8.

c) Let p: G; — GL3(C) be an irreducible representation 1° of G; of degree
3. If y € Gy is of order 2, show that Tr(p(y)) = —1. Deduce that —p(y) is a
reflection.

d) Let G be the subgroup of GL3(C) generated by the elements —p(y), for
y of order 2 in Gy. Show that G is isomorphic to G; x {1,—1}, and is thus
of order 336.

10A detailed study of such a representation can be found in H. WEBER, Lehrbuch
der Algebra, Bd. II, Abschn. 15.
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e) Show that the characteristic degrees k1, ko, k3 of the algebra of symmetric
invariants of G are equal to 4, 6 and 14. (Use the relations [1%; =336 and
1

2 (ks —1) =21.)
1
f) Show that G is not a Coxeter group..

5) *Let K be a field and S = K[Xj,...,X,] a graded polynomial algebra
over K, generated by algebraically independent elements X;, homogeneous of
degrees > 0.

a) Let Yi,...,Y, be homogeneous elements of S of degrees > 0, and let
R =K]Yy,...,Y,] be the subalgebra of S generated by these elements. Prove
the equivalence of the following properties:

(i) (Y1,...,Yy) is an S-regular sequence.
(ii) S is integral over R.
(iii) The ideal of S generated by Yi,..., Y, is of finite codimension in S.

iv) For any extension K of K, the system of equations Y;(z1,...,2,) = 0
<4 < n, 2; € K) has only the trivial solution (0,...,0).

1
(i) <= (iii) follows from a theorem of Macaulay (Commutative Algebra);
iii) <= (iv) follows from the Zeros Theorem (Commutative Algebra, Chap.
V, §3, no. 3, Prop. 2); (ii) <= (iii) is easy.)

If these properties are satisfied, show that the Y; are algebraically inde-
pendent over K, and that S is a free R-module of rank equal to

(
(
(
(ii

H deg(Y5)
[T deg(X;)"
b) Let G be a finite group of automorphisms of the graded algebra S, let S be
its subalgebra, of invariants, and let Yy,...,Y, be elements of S satisfying
conditions (i),. .., (iv) above. Show that S¢ = K[Yi,...,Y,] if and only if
[1deg(Y:)
Card(G) = ¢ -
(@)= Taegx)

9 6) *Let n be an integer > 1, ¢ a power of a prime number, K = F,
V = K", G = GL(n,K) and G; = SL(n,K). Identify G with the group
GL(V). Further, denote by S the algebra S(V) = K[Xj,...,X,] and R (resp.
R1) the subalgebra of S consisting of the elements invariant under G (resp.
Gy).
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a) Let e = (ey,...,e,) be a sequence of integers > 0. Put
Le = det(X?7).

This is an element of S.
Show that
g.Le = det(g)Le for all g € G.

(Remark that, if g.X; = > a;;X;, then g.Xge = Zainge.) In particular, L
J j
belongs to R;.

b) Let j € [1,n]. Put
Z;= II (X5 + g a;;X;),
i>j

(aiz)

the product being over all families (a;;);<i<n of elements of K. Let
n
T= 112
=1

Show that T divides all the Le. Deduce that T = L,,, where e, =
(0,1,...,n — 1), and that T is invariant under G.

c) Denote by e; (1 <% < n—1) the sequence (0,1,...,5—1,i+1,...,n), and
put Y; = Le, /T, cf. b). Show that the Y; belong to R and that deg(Y;) =
" —dq.

d) Let S’ = K[Xy,...,Xn-1], and let T/, Y],...,Y, _, be the elements of S’

defined in the same way as T,Yy,...,Y,—1 (but replacing n by n — 1). Let
f :S — S’ be the homomorphism defined by

FX) =X (1<i<n=1), f(Xa)=0.
Show that
FT) =0, f(Y1) =T f(Y;) =Yi%, for 2<i<n—1.

e) Show that the family (T,Yq,...,Y,_1) satisfies condition (iv) of Exerc. 5.
(Let z = (z1,...,%n) be a zero of the system (T,Y1,...,Y,—1) in an exten-
sion K of K. Since z is a zero of T, the z; satisfy at least one non-trivial
linear relation with coefficients in K. Transforming x by an element of G if
necessary, we can assume that z, = 0. Conclude by applying d) and arguing

by induction on n.)

f) Show that Ry = K[T,Y1,...,Ys_1], and that T,Yy,...,Y,_1 are alge-
braically independent (“Dickson’s Theorem” — apply e) and Exerc. 5, remark-
ing that the order of G is equal to deg(T) = 2 deg(Y;)).

g) Show that R =K[T971,Yy,..., Yu 1)
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9 7) *Let R be a regular local ring (Commutative Algebra, Chap. VIII, §5,
no. 1), with maximal ideal m and residue field k. Let G be a finite group
of automorphisms of R, and let R’ = RS be the subring of R consisting
of the elements invariant under G. This is a local ring with maximal ideal
m’ =mNR’. Assume the following:

(i) R’ is noetherian and R is an R’-module of finite type.
(ii) The composite R" — R — k is surjective.

Put V = m/m?; this is a k-vector space. The action of G on R defines a
homomorphism ¢ : G — GL(V).

a) Let p be a prime ideal of R of height 1 (Commutative Algebra, Chap. VII,
§1, no. 6) and let s € G be such that s(p) = p and that s acts trivially on
R/p. Show that £(s) is a pseudo-reflection of V. (Remark that the image of
p in m/m? is of dimension 0 or 1.)

b) Show that, if R’ is regular, the subgroup £(G) of GL(V) is generated by
pseudo-reflections, (Let H be the subgroup of G generated by elements whose
image under ¢ is a pseudo-reflection, and let RH be the subring of R consisting
of elements invariant under H. Show, using a), that no prime ideal of R’ of
height 1 is ramified in R¥; using the fact that R¥ is integrally closed, deduce
by means of the Purity Theorem!! that R’ = R¥, so H=G.)

¢) Assume now that the order of G is coprime to the characteristic of k. Show
that € is injective.
Let (m},) be the filtration of R’ induced by the m-adic filtration (m™) of
R, and let
i:gr(R’) — gr(R)

be the canonical homomorphism of the associated graded algebra of R’ to
that of R (Commutative Algebra, Chap. III, §2). Show that ¢ is injective,
and that its image is the subring gr(R)€ of gr(R) consisting of the elements
invariant under G.

d) Retain the assumptions and notation of ¢), and assume further that (G) is
generated by pseudo-reflections. If [ = dim V, let Py,...,P; be algebraically
independent homogeneous generators of the k-algebra gr(R)< (such elements
exist by Th. 4 and the fact that gr(R) can be identified with the symmetric
algebra of V); let p1, ..., p; be their degrees. By c), we can find z; € m,, such
that gr(z;) = P;. Show that the z; generate the ideal m’ and deduce that R’

is regular.,

9 8) *Let V be a finite dimensional vector space over a field K, let S be the
symmetric algebra of V, and let G be a finite subgroup of GL(V). Assume

11Cf. M. AUSLANDER, On the purity of the branch locus, Amer. J. of Math., v.
LXXXIV (1962), p. 116-125.
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that the algebra S© of symmetric invariants of G is a graded polynomial
algebra.

a) Let u be an element of the dual V* of V, and let G, be the subgroup
of G consisting of the elements leaving w invariant. Show that G, is gener-
ated by pseudo-reflections. (The linear form u extends to a homomorphism
fu:S — K. If S, denotes the local ring of S with respect to the kernel of f,,,
the ring S,, is regular. Conclude by applying Exerc. 7 b) to G, considered as
a group of automorphisms of S,,.)

In particular, G is generated by pseudo-reflections.

b) Let A be a subset of V*, and let G5 = ﬂA G,. Show that G, is generated
u€

by pseudo-reflections. (Extending the base field if necessary, we can assume
that K is infinite. Show that in that case there exists an element v of the
vector subspace of V* generated by A such that G, = Ga. Conclude by

applying a) to v.).

9) Let V be a vector space of dimension 4 over a finite field K, of characteristic
different from 2, and let Q be a non-degenerate quadratic form on V of index
2 (Algebra, Chap. IX, §4, no. 2). Let G = O(Q) be the orthogonal group of
this form; this is a finite group generated by reflections (loc. cit., § 6, no. 4,
Prop. 5).

a) Let E be a maximal totally isotropic subspace of V, and let Gg be the
subgroup of G consisting of the elements g such that g(z) = z for all z € E.
Show that Gg is isomorphic to the additive group of K, and contains no
pseudo-reflection.

b) Show that the algebra of symmetric invariants of G is not a graded poly-
nomial algebra (use the preceding exercise).

§6.

In the exercises below (with the exception of Exerc. 3), the assumptions and
notation are those of §6.

1) Assume that W is irreducible. Let ¢ be a Coxeter transformation of W, let
I" be the subgroup of W generated by c, and let A be the set of unit vectors
orthogonal to an element of §). Show that I" has [ orbits in A, and that each
orbit has h elements. (Argue as in the proof of Prop. 33 of Chap. VI, §1,
no. 11.)

9 2) Assume that W is irreducible. Let C be a chamber relative to W,
(Hy,...,H;) its walls, and e; a non-zero vector orthogonal to H;. Assume
that ey, ..., e, (vesp. €r41,...,€;) are pairwise orthogonal (cf. no. 2). For all
u € Z, define H, and s, by H, = Hy if u = k (mod. I) and s, = su,,.
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a) Show that the elements of §) are the s;83...8,-1H, foru=1,2,...,lh/2.

b) Let s’ = s1...5, and s” = s,.41...5;, so that ¢ = §'s” is the Coxeter
transformation associated to the ordered chamber C. Let wg be the element
of W that transforms C to —C (cf. §4, Exerc. 2). Show that, if h is odd,

wo = §I$//s/ . ..S'”Si — §//s/s// . .3'8’1 — s/lc(h—l)/2 — c(h—l)/25/.

h terms h terms

c) Put S = {s1,...,81}. The pair (W,S) is a Coxeter system. If w € W,
denote by Is(w) the length of w with respect to S (Chap. IV, §1, no. 1).
Show that

Is(s=r, Is(s")=1-r, Ils(c)=1.

Deduce that, with the assumptions in b),

h-1 h—1
Is(wo) <7+ —2—l and Ig(wo) < (I—7)+ Tl'

Show on the other hand that lg(wg) = Card($)) = hl/2 (use Exerc. 22 of
Chap. IV, §1). Deduce that r = [/2 and that (s1,s2,...,5n/2) is a reduced
decomposition of wyg.

d) Show that, if h is even, (s1,...,Sn/2) is a reduced decomposition of wo =
/2. (Same method.)

9 3) Let K be a commutative ring, E a free K-module with basis (ey, ..., e),
and fi,..., fi elements of the dual of E. Put a;; = fi(e;). If 1 < i <, let s;
be the pseudo-reflection s, ¢, (§2, Exerc. 1). Then

si(ej) = €5 — Q4;€;.
Put ¢ =s1...5;, and z; = c(e;).

a) For 1 <1,k <1, put

yF =51...51(e;) and y; = s1...5-1(e;) = yf‘l.
Thus y? = e; and y} = ;.
Show that
yf_l - yf = Qi Yk-
Deduce the formulas
€ =Y+ k; AkilYk
T

= yi— 3 ave.
T y’L k>1 ly

b) Let C be the matrix of ¢ with respect to the basis (e;). Let U = (u;;) and
V = (v;5) be the matrices defined by
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ui:{aﬁ ifi<j v”:{o ifi<j
J 0 otherwise, ¥ a;; otherwise.
The matrix I + U is invertible with determinant 1. Show that
C=(1-V)I+U)"L

Deduce that
det(AI — C) = det((A — 1)I+ V + AU),

in other words

det(\l — C) =
()\ — 1) + a1 Ao a3 Aay;
ao1 /\()\ — 1) + a9 Aao3 Aagg
asi as2 (A - 1) + a3 )\(13[
an a2 a3 (A=1)+ay

¢) Let I = (I, S) be the graph whose set of vertices is I = [1,!] and whose set
S of arrows is the set of subsets {7, j} of I with 2 elements such that a;; # 0 or
aj; # 0. If o = {t,j} belongs to S, denote by o, the transposition of ¢ and j
(considered as an element of the symmetric group S), and put a, = —a;ja;.

Let 9B be the set of subsets of S consisting of the arrows whose vertices
are disjoint. If X € B, denote by C(X) the set of ¢ € I that are not vertices
of any arrow of X, and put ox = [1 Ou, AX = I1 ag.

aeX aeX

Let o € Si, and let d, be the term corresponding to ¢ in the expansion
of the determinant of (A — 1)I + V + AU. Show that, if o is of the form oy,
with X € 8, then

do = ax 24X JI (A —1+ay).
i€C(X)

Assume now that I' is a forest (Chap. IV, Appendix, no. 3). Show that, if
o € S; is not of the form ox with X € 8B, then d, = 0. Deduce the formula

det(A —c) = 2 axA® 4 [ (A =1+ ay).
XeB 1€C(X)

d) Consider the polynomial

X a2 ay
a1 X ag

PX) =1 . )
an ap X

To the assumptions in c), we add that a;; = 1 for all 4. Show that in that

case
det(A\2 —c) = XP(A + A71).



§6. EXERCISES 153

4) With the assumptions and notation of no. 1, denote by n;; the order of
SH,SH;, and put a;; = —200s— Then a;; = 2 and a;; < 0 if ¢ # j, cf. §3.

Show!2, by using the method of the preceding exercise, that

X a2 ay
ay; X as; L
. = Hl(X — 2cos(mm;/h)),
. =
an ap X
where my, ..., m; are the exponents of W.

2For more details, see: H. S. M. COXETER, The product of the generators of
a finite group generated by reflections, Duke Math. Journal., v. XVIII (1951),
p. 765-782.






CHAPTER VI
Root Systems

§ 1. ROOT SYSTEMS

In this paragraph, k denotes a field of characteristic zero. From no. 3 onwards,
we assume that £k = R.

1. DEFINITION OF A ROOT SYSTEM

Lemma 1. Let V be a vector space over k, R a finite subset of V generating
V. For any o € R such that a # 0, there exists at most one reflection s of V
such that s(a) = —a and s(R) = R.

Let G be the group of automorphisms of V leaving R stable. Since R
generates V, G is isomorphic to a subgroup of the symmetric group of R,
and hence is finite. Let s, s’ be reflections of V such that s(a) = s'(a) = —a,
s(R) =R, s'(R) = R. Then ¢ = ss’ belongs to G, and hence is of finite order
m. On the other hand,

t(a) =a and t(z) =z mod. ka forallz € V.
Hence, there exists a linear form f on V such that
tz)=z+ f(z)a forallz eV
and f(a) = 0. By induction on n, it follows that
t"(z) =z +nf(z)aforalzeV.

Taking n equal to m, we see that mf(z) =0forallz € V,so f=0,t=1
and s = ¢'.

DEFINITION 1. Let V be a vector space over k, and R a subset of V. Then
R is said to be a root system in V if the following conditions are satisfied:

(RS1) R is finite, does not contain 0, and generates V.

(RS11) For all o € R, there exists an element o of the dual V* of V
such that (a,a”) = 2 and that the reflection Sq,o (cf. Chap. V, § 2) leaves R
stable.
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(RSm1) For alla € R, a'(R) C Z.

By Lemma 1, the reflection s, o (and hence also the linear form «”) is
determined uniquely by «, so (RSyi1) makes sense. We put sq o = So. Then
sa(@)=z— (o, z)aforallz € V.

The elements of R are called the roots (of the system considered). The
dimension of V is called the rank of the system.

The automorphisms of V that leave R stable are called the automorphisms
of R. They form a finite group denoted by A(R). The subgroup of A(R)
generated by the s, is called the Weyl group of R and is denoted by W(R),
or simply by W.

Remark. 1) Let k' be an extension of k. Identify V canonically with a subset
of V® k' and V* with a subset of V* ® k¥’ = (V ® k¥')*. Then, R is a root
system in V ® k’, and the o~ are the same as before.

Lemma 2. Let R be a root system in V. Let (z|y) be a symmetric bilinear
form on V, non-degenerate and invariant under W(R). Identify V with V*
by means of this form. If a € R, then a is non-isotropic and

20
(afe)’
This follows from formula (4) of Chap. V, § 2, no. 3.

PROPOSITION 1. Let Vq (resp. Vg) be the Q-vector subspace of V (resp.
V*) generated by the a (resp. the a”). Then Vq (resp. V) is a Q-structure
on V (resp. V*) (Algebra, Chap. II, § 8, no. 1). The restriction to Vq X Vg
of the canonical bilinear form on V x V* gives an identification of each of the
spaces Vq, V§ with the dual of the other. The set R is a root system in Vq.

If k = R, there exists a scalar product on V invariant under W(R) (In-
tegration, Chap. VII, § 3, no. 1, Prop. 1); Lemma 2 now shows that the o~
generate V*. By Remark 1, the a” again generate V* if k = Q. We now go
to the general case. Put E = Vq. By (RSmr), each a” maps E to Q, and so
defines an element & of E*. It is immediate that R is a root system in E,
and that the element corresponding to a in E* is &. By what we said above,
the & generate the vector space E*. Consider the canonical homomorphism
i: E®qk — V, and its transpose *i : V¥ — E* ®q k. Since R generates V,
¢ is injective; but the image of i contains the &, so i is surjective. From
this we conclude finally that i and % are isomorphisms. We can therefore
identify V with E® k, V* with E* ® k, o™ with &, and V§, with E*. Thus,
Vq (resp. V) is a Q-structure on V (resp. V*). The restriction to Vg x Vg
of the canonical bilinear form on V x V* can be identified with the canonical
bilinear form on E x E*, hence the proposition.
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Remarks. 2) Proposition 1 reduces the study of root systems to the case
k = Q. Remark 1 reduces it further to the study of root systems in the real
vector space Vr = Vq ®q R. The Weyl groups associated to these different
systems are canonically identified.

3) Since the a” generate V*, the group W(R), considered as a subgroup
of GL(VR), is essential (Chap. V, § 3, no. 7). Moreover, the Cor. of Th. 1
of Chap. V, § 3, no. 2 shows that the only reflections belonging to W(R) are
the s,.

PROPOSITION 2. The o™ form a root system in V*, and o~ = a for all
a€R.

The o satisfy (RSp) by Prop. 1. Since sq,o- is an automorphism of the
vector space V equipped with the subset R, !(s4,0°) ! leaves the set R™ of
the o stable; but *(sa,6") ' = Sa-,a, Which proves that R” satisfies (RSy)
and that o = «. Finally, (o™, 8) € Z for all @™ € R” and 3 € R, so R satisfies
(RSqm).

The set R™ is called the inverse root system of R. The map a — o’ is
a bijection from R to R”, called the canonical bijection from R to R”. Note
that, if a, 8 are elements of R such that o + 8 € R, then (o + 8) #a + 5
in general.

Since sq(@) = —a, axiom (RSy1) shows that —R = R. Evidently (—a) =
—a” and —1 € A(R) (but it is not always true that —1 € W(R)).

The equality *(sq,a")”} = Sa-,o shows that the map u — *u~! is an
isomorphism from the group W(R) to the group W(R"). We identify these
two groups by means of this isomorphism; in other words, we consider W(R)
as acting both in V and in V*. Similarly for A(R).

1

PROPOSITION 3. For z,y € V, put
(zly) = 2 (o) ().

a€R

Then (z|y) is a non-degenerate symmetric bilinear form on V, invariant un-
der A(R). For z,y € Vq we have (z|y) € Q. The canonical extension of (x|y)
to
VrR=Vq®qR
s non-degenerate and positive.
It is clear that (z|y) is a symmetric bilinear form on V. If g € A(R),

(9(2)lg(y)) = 0‘ZG:R(t.q(Of),ff) (*g(e),y) = (zly)

since (*g)(R”) = R". If z,y € Vq, then (z|y) € Q by (RSm). If z € Vg, then
(2]2) = ZR(a“, z)2 > 0, and (2|2) > 0 if z # 0 by Prop. 1, so the canonical
aE
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extension of (z]y) to Vg is positive and non-degenerate. The restriction of
(z]y) to Vq is thus non-degenerate, and hence the form (z|y) on V is non-
degenerate.

PROPOSITION 4. (i) Let X be a subset of R, let Vx be the vector subspace of
V generated by X, and let Vi be the vector subspace of V* generated by the o,
where a € X. Then V is the direct sum of Vx and the orthogonal complement
of Vi, V* is the direct sum of Vi and the orthogonal complement of Vx, and
VY is identified with the dual of Vx.

(ii) RNVx is a root system in Vx, and the canonical bijection from RNVx
to its inverse root system is identified with the restriction of the map a — o~
to RN Vx.

By Remark 2, we can assume that k& = R. Identify V with V* by means
of the symmetric bilinear form of Prop. 3. We have o™ = ((fﬁ for all @ € R
(Lemma 2). Every vector subspace of V is non-isotropic, and the proposition
is now clear.

COROLLARY. Let Vi be a vector subspace of V, and let Vo be the vector
subspace generated by RNVy. Then RNV; is a root system in Vs.

This follows from (ii) applied to X = RN V;.
For a, 8 € R, put

(o, f7) = n(e, B). (1)
Then
n(a,a) =2 ()
n(_aa ﬂ) = n(a7 - IB) = _n(aa ) (3)
By (RSm),
n(a, B) € Z. (4)
By the definition of n(«, 8),
sg(a) = a —n(a, ). (5)
Formula (1) and Prop. 2 imply that
n(a, B) = n(8,a). (6)

Let (z|y) be a symmetric bilinear form on V, non-degenerate and invariant
under W(R) (Prop. 3). By Lemma 2,

nfap) — 2010)

(818)

: (7)
It follows that
n(a, B) =0 <= n(B,a) =0 <= (a|B) = 0 < s, and sg commute. (8)

n(f,0) _ (816)
n(a,f) _ (ala)’ ©)

If (a|B) # 0, then
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2. DIRECT SUM OF ROOT SYSTEMS

Let V be a vector space over k that is the direct sum of a family (V;)i1<i<r
of vector spaces. Identify V* with the direct sum of the V}. For all 3, let R;
be a root system in V;. Then R = UR,, is a root system in V whose inverse

system is R™ = URL ; the canomcal bijection from R to R™ extends, for all
T

1, the canonical bijection from R; to R;. The set R is called the direct sum
of the root systems R;. Let o € R;. If j # 4, the kernel of o™ contains V, so
8o induces the identity on V;; on the other hand, ka C V;, so So leaves V;

stable. These remarks show that W(R) can be identified with H W(Ry).

A root system R is said to be irreducible if R # & and 1f R is not the
direct sum of two non-empty root systems.

PROPOSITION 5. Let V be a vector space over k that is the direct sum of
vector spaces Vi,...,V,. Let R be a root system in V. Put R, = RNV;. The
following three conditions are equivalent:

(i) the V; are stable under W(R);

(ii) RCV,UVU---UV,,

(iii) for all i, R; is a root system in V;, and R s the direct sum of the R;.

(iii) = (i): this follows from what we said at the beginning of this num-
ber.

(i) = (ii): assume that the V; are stable under W(R). Let o € R and
let H be the kernel of a”. By Prop. 3 of Chap. V, § 2, no. 2, each V; is the
sum of a subspace of H and a subspace of ka. Hence one of the V; contains
ka,soae ViUVaU---UV,.

(if) = (iii): if condition (ii) is satisfied, R; generates V; for all ¢, so R; is
a root system in V; (Prop. 4). It is clear that R is the direct sum of the R;.

COROLLARY. Let R be a root system in V. The following conditions are
equivalent:

(i) R is srreducible;

(ii) the W(R)-module V 1is simple;

(iii) the W(R)-module V is absolutely simple.

(if) <= (i): this follows from Prop. 5 and Maschke’s Theorem (Chap. V,
Appendix, Prop. 2).

(iii) <= (ii): this follows from Prop. 1 of Chap. V, § 2, no. 1.

PROPOSITION 6. Every root system R in V is the direct sum of a family
(Rs)ser1 of irreducible Toot systems that is unique up to a bijection of the index
set.

The existence of the R; is proved by induction on CardR: if R is non-
empty and not irreducible, R is the direct sum of two root systems R’, R” such
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that CardR’ < CardR, CardR” < CardR, and the induction hypothesis
applies to R’ and R”. To prove uniqueness, it suffices to prove that, if R
is the direct sum of R’ and R”, every R; is necessarily contained either in
R’ or in R”. Let V', V" V[, V! be the vector subspaces of V generated by
R',R”,R'NR;,R”" NR;. Since the sum V' + V" is direct, the sum V; + V7 is
direct. Since R; C R’ UR”, R; is the direct sum of the root systems R’ N R;
and R” N R;; hence either R’ NR; = @ or R” N R; = &, which proves the
assertion.

The R; are called the irreducible components of R. For any non-zero scalars
Ai, the union of the A;R; is a root system in V, whose inverse system is the
union of the A\]'R;, and whose Weyl group is W(R).

PROPOSITION 7. Let R be a root system in V, (R;) the family of its ir-
reducible components, V; the vector subspace of V generated by R;, B the
invariant symmetric bilinear form on V defined in Prop. 3, and B’ a sym-
metric bilinear form on V invariant under W(R). Then the V; are pairwise
orthogonal with respect to B, and, for all i, the restrictions of B and B’ to
V; are proportional.

If v; € Vg, v; € Vj, ) # 7, and ifwe W(RJ), then

B (vi, w(v;)) = B' (vs,v5),

which shows that w(v;) — v; is orthogonal to v; with respect to B’. Since V;
is irreducible for W(R;), it is generated by the w(v;) —v;, and it is therefore
orthogonal to V.

The fact that the restrictions of B and B’ to each of the V; are proportional
follows from Prop. 1 of Chap. V, § 2, no. 1.

Remark. Choose a scalar product on Vg invariant under W(R). It is then
possible to speak of the length of a root and the angle between two roots.:
Prop. 7 shows that this angle is independent of the choice of scalar product,
as is the ratio of the lengths of two roots, provided they belong to the same
irreducible component of R.

3. RELATION BETWEEN TWO ROOTS

Recall that we assume from now on that k = R. (We leave to the reader the
task of extending the definitions and results to the general case, by using the
method indicated in Remark 2 of no. 1.)

Throughout the following, R denotes a root system in a vector space V;
and V is equipped with a scalar product (z,y) — (z|y) invariant under W(R),
cf. Prop. 3.

Let a, 8 € R. By formula (7) of no. 1,

n(a, B)n(B, @) = 4cos® (a, B) < 4. (10)
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Thus, the integer n(a, 8)n(B,a) must take one of the values 0,1,2,3,4. In
view of Chap. V, § 2, no. 5, Cor. of Prop. 6, and of the footnote on the page
of Chap. V, § 4, no. 8, we see that the only possibilities are the following, up
to interchanging « and 3:

)

1) n(awB) = n(ﬂ» a) = 07 (O!, ,8) = %, SasSp of order 2,

2) n(ap)=n(B,a)=1; (,B)=5%; 548 of order 3;
e fI=I1 8 1I;

3) n(e,B)=n(B,a) =— (a,8) = &, sasp of order 3;
I e fI=I1 B 1I;

4) n(o,p) =1, n(f,a)=2; (,0)=1%; sasp of order 4;
16 =21

5 n(a,B)=-1, n(B,a)=-2 (a,p) =23, SaSp of order 4;
181I=v2lal

6) n(a,pB)=1 nBa)=3 (o, B) = §; sa8p of order 6;
16811= V3l ol

7 n(a,B)=-1, nB,a)=-3; (a8 =2, so8p of order 6;
IIﬂII—\/—IIaII

8) n(a,B) =n(B,a)=2

9) n(a7/8):n(ﬁ7a):_2; a——ﬁ,
10) n(a,B) =1, n(B,a) = 4; 8 =2a;
11) n(a, IB) = _17 n‘(ﬂ’ a) = _4v ﬂ = —2a.

In particular:

PROPOSITION 8. (i) If two roots are proportional, the factor of proportion-
ality can only be £1, :I:%,:I:2.

(ii) If @ and B are two non-proportional roots, and if || o ||<|| B ||, then
n(a, B) takes one of the values 0,1, —1

If a root a € R is such that 2a ¢ R, then « is called an indivisible root.

THEOREM 1. Let a, 8 be two roots.
(i) If n(e, B) > 0, & — B is a root unless a = (.
(ii) If n(e, B) <0, o+ B is a root unless oo = —f3.
If n(a, B) > 0, the possibilities, by the list above, are the following:
1) n(a, B) = 1; then a — B — sp(a) € R;
2) n(B,a) =1; then B —a=3s4,(8) €ER,s0a— B €R,;
3)B=a.

This proves (i), and (ii) follows by changing 8 to —8.
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COROLLARY. Let o and B be two roots.

(i) If (a|B) > 0, & — B is a root unless a = .

(it) If (a|B) <0, a+ B is a root unless a = —f.

(iii) If « — B ¢ RU {0} and o+ 8 ¢ RU {0}, then (a|B) = 0.

Assertions (i) and (ii) follow from Th. 1 and formula (7) of no. 1. Assertion
(iii) follows from (i) and (ii).

It is possible that a + 3 € R, (a|8) = 0 (cf. Plate X, System By). When
a—f ¢ RU{0} and a+ 8 ¢ RU {0}, o and § are said to be strongly
orthogonal.

PROPOSITION 9. Let a and B be two non-proportional roots.

(i) The set I of integers j such that B+ ja is a root is an interval (—gq,p)
in Z containing 0.
(ii) Let S be the set of B8+ ja for j € 1. Then,

34(S) =S and s4(8+ pa) =06 — qa.

(iii) p — ¢ = —n(B, a).

Clearly, 0 € I. Let p (resp. —q) be the largest (resp. smallest) element of
L. If not all the integers in [—g,p] belong to I, there exist two integers r, s
in (—q,p) with the following properties: s > r+1,s e L,r e ,r+k ¢ I for
1 < k < s —r — 1. With the notation of the Cor. of Th. 1, (a|8 + sa) <
0, (a|8 + ra) > 0, which is absurd because

(a| B+ sa) 0> (a|f+ra).

This proves (i).

We have s,(8+ja) = —n(8,a)a—ja = f+j'a with j/ = —j —n(B, a).
Thus s,(S) C S and consequently s4(S) = S. Now j — —j — n(8,0) is a
decreasing bijection from I to I. It follows that, 7/ = —¢ when j = p, so that
—q = —p — n(B, ). This proves (ii) and (iii).

The set S is called the a-chain of roots defined by 3, f — qa is its origin,
B+ pa is its end, and p + ¢ is its length.

COROLLARY. Let S be an a-chain of roots, and -y the origin of S. The length
of S is —n(y, a); it is equal to 0,1,2 or 3.

The first assertion follows from Prop. 9, (iii), applied to 8 = v, and using
the fact that ¢ = 0.

On the other hand, since 7 is not proportional to , the list given at the
beginning of this no. shows that |n(y, @)| < 3, hence the corollary.

Remark. We retain the notation above. Then:

1) If the length of S is 0, then (aly) = 0.
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2) If the length of S is 1, then n(y,a) = —1, and there are three cases:
n(@,7) =-1, (ala)=0h), (ah)=-3(la), (=%
n(a,y) = -2, (ela)=201ly), (aly)=-3(ele), (7)) =%

'n'(a: 7) = -3, (a|a) = 3(7'7)) (Cll’)/) = _%(ala)’ (av 7) = 5%

o -3 -3
n n n
mT\3 n 4 s’ 6
3 2 3
Y+eo Y Y+a& Y Y+ &

3) If the length of S is 2, then n(y,a) = —2, so

3

n(ao) = =1, (ela) = 5(vh), (ah) = ~(ala), (@) = -

4) If the length of S is 3, then n(vy,a) = —3, so

n(@,y) = ~1, (ala) = 3(11), (@h) = ~2(ala), @) = .

CE]

I\
3

+ wo |2

Y Y+a y+2a y+ 3a

We shall see (Plate X, Systems Ao, Ba, G2) that all these cases are actually
realised.

PROPOSITION 10. Let a, 8 be two mon-proportional roots such that 8 + «
18 a root. Let p,q be the integers in Prop. 9. Then

(Btalft+a) g+l
(B818) P

Let S be the a-chain defined by £, y its origin; its length [ is > 1 since
B+ «a is a root. The following cases are possible:

1)Il=1;then 8 =7,9=0,p=1,(8+a|B +a) = (0]8).
2)1=2,B=~;thenqg=0,p=2,(8+c|B+a)=1(8|8).
3)l=27B:’Y"l'a)thenq:1»p=1>(ﬁ+a|ﬁ+a)=2(ﬁ|/8)
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4)1=3, B=; theng=0,p=3,(B+alf+a) = 3(IB).
5)l=3>ﬁ=7+a; thenq=1’p=2’(ﬂ+alﬂ+a)=(ﬂlﬂ)'
6) | =3, B =7+ 20c; then ¢ =2,p=1,(8+ a|B + a) = 3(8|B).

In each case, the formula to be proved is satisfied.

PROPOSITION 11. Assume that R is irreducible. Let o and 3 be two roots
such that || o ||=|| B ||. There exists g € W(R) such that g(a) = 5.

The transforms of a by W(R) generate V (no. 2, Cor. of Prop. 5). Hence
there exists g € W(R) such that (g(a)|3) # 0. We assume from now on that
(a|B) # 0. By formula (9) of no. 1, n(e, 8) = n(g, ). Replacing S if necessary
by sg(8) = —B3, we can assume that n(a, 3) > 0. Then, by the list at the
beginning of no. 3, either & = S (in which case the proposition is clear), or
n(a, B) = n(B, @) = 1; in that case

sasﬁsa(ﬂ) = SaSﬁ(,@ - a) = sa(_ﬂ —a+ IB) =a.
4. REDUCED ROOT SYSTEMS

A root system is said to be reduced if every root of the system is indivisible
(no. 3).

PROPOSITION 12. Assume that R is irreducible and reduced.

i) The ratio (L2 for a € R, € R must take one of the wvalues
(

ala)
1 1
1,2,1,3,1.

(ii) The set of the (a|a) for a € R has at most two elements.

Since R is irreducible, the transforms of a root by W(R) generate V (no. 2,
Cor. of Prop. 5). Hence, for any roots «, 3, there exists a root ' such that
(a|B") # 0 and (8'|8') = (B]6). By formula (9) of no. 1 and the list of no. 3,
(g;{g ;) takes one of the values 1,2, %, 3, % (recall that the system is assumed
to be reduced). By multiplying (x|y) by a suitable scalar, we can assume that
(a]a) = 1 for certain roots and that the other possible values of (§|8) for
B € R are 2 and 3. The values 2 and 3 cannot both be attained, since in that
case there would exist 8 € R,v € R such that % = 3 contrary to what

bR
we have seen above.

PROPOSITION 13. Assume that R is irreducible, non-reduced and of rank
> 2.

(i) The set Rg of indivisible roots is a root system in V; this system is
irreducible and reduced; and W(Ro) = W(R).

(ii) Let A be the set of roots a for which (a|c) takes the smallest value .
Then any two non-proportional elements of A are orthogonal.

(iii) Let B be the set of B € R such that (8|8) = 2X. Then B # @,
Ro=AUB,R=AUBU2A.
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If o € R—Ro, then 2a € R, but 1 (3a) ¢ R (Prop. 8), so 3a € Ro. This
proves that Ry satisfies (RS;). It is clear that, for all & € R, s4,4-(Ro) = Ro,
so Rg satisfies (RSy1) and (RSp). Since o € R-Rp implies that ja € Ro
and since s, = 54/2, we have W(R) = W(Rg). Thus Ry is irreducible (Cor.
of Prop. 5), and it is evidently reduced.

Since R is not reduced, there exists @« € Ry such that 2a € R. Since
Ry is irreducible and dimV > 2, a cannot be proportional or orthogonal to
every root. Let B € Ry be such that n(8,a) # 0 and g is not proportional
to a. Changing 8 to —f if necessary, we can assume that n(3,a) > 0. Now
in(B,a) =n(B,2a) € Z, so n(B,a) € 2Z. From the list in no. 3, n(B, a) = 2,
(BIB) = 2(ala). Since Ry is reduced, Prop. 12 shows that, for all v € Ro,
either (7]v) = (a|a) or (y]v) = 2(a|a). Also, the above shows that, for all
v € R=Ro, the vector 1v is an element of Ro such that (%fyl%fy) = (aa).
Thus, A = (a|a), B # @, Rg = AUB, and R C A UB U 2A; on the other
hand, if v € A, there exists g € W(R) such that v = g(a) (Prop. 11), so
2y = g(2a) € R; thus 2A C R and R = AU B U 2A. Finally, let v, be two
non-proportional elements of A. Then

n(2v,7'") = 2n(y,7') = 4n(v,27') € 4Z, and |n(v,7)| <1

since v and 4’ have the same length, so n(y,v’) =0 and (y|y’) = 0.

PROPOSITION 14. Assume that R is irreducible and reduced, and that (a|a)
takes the values A and 2\ for o € R. Let A be the set of roots a such that
(a]a) = X. Assume that any two non-proportional elements of A are orthog-
onal. Then R; = R U 2A is an irreducible non-reduced root system and R is
the set of indivisible roots of R;.

It is clear that R; satisfies (RS;) and (RSyy). We show that, if a, 8 € R4,
then (a”, 8) € Z. This is clear if a € R. Since (2a)"= 1a” for a € A, it is also
immediate if o, 8 € 2A. Finally, assume that 8 € R and that a = 2y with
v € A.

1) If y = 8, then (o, B) = £1(y;7) = £1.

2) If «y is not proportional to 8 and if § € A, the assumption on A implies
that (v, 4) = 0, s0 (o, 8) = 0.

3) If B € R — A, then (8|8) = 2A = 2(v|y), so (8,7} is equal to 0, 2 or
—2 by the list in no. 3. Thus (8,a") = 3(8,7") € Z.

Thus R; is a root system in V, and the other assertions are clear.

5. CHAMBERS AND BASES OF ROOT SYSTEMS

For all a € R, let L, be the hyperplane of V consisting of the points invariant
under s,. The chambers in V determined by the set of the L, (Chap. V, § 1,
no. 3) are called the chambers of R. The bijection V — V* defined by the
scalar product (z|y) takes o to (azﬁ for o € R, hence L, to L,-, and hence
the chambers of R to those of R". If C is a chamber of R, the corresponding
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chamber of R™ is denoted by C”. By Prop. 7 of no. 2, C depends only on C
and not on the choice of (z|y).

THEOREM 2. (i) The group W(R) acts simply-transitively on the set of
chambers.

(ii) Let C be a chamber. Then C is a fundamental domain for W(R).

(iii) C is an open simplicial cone (Chap. V, § 1, no. 6).

(iv) Let Li,La,...,L; be the walls of C. For all i, there exists a unique
indivisible root o; such that L; = L, and such that o; is on the same side of
L; as C.

(v) The set B(C) = {au,...,q} is a basis of V.

(vi) C is the set of x € V such that (o', z) > 0 for all i (or, equivalently,
the set of © € V such that (z|e;) > 0 for all i).

(vii) Let S be the set of the so,. The pair (W(R),S) is a Cozeter system
(Chap. IV, § 1, no. 3).

Assertions (i) and (vii) follow from Chap. V, § 3, no. 2, Th. 1. Assertion
(ii) follows from Chap. V, § 3, no. 3, Th. 2. Assertion (iv) is clear. The root
a; is orthogonal to L;, and «; is identified with 2a;/(a;|a;). Since W(R) is
essential (no. 1, Remark 3), assertions (iii), (v) and (vi) follow from Chap. V,
§ 3, no. 9, Prop. 7.

Remarks. 1) Assertion (vii) shows in particular that W(R) is generated by
the reflections s, .

2) If z,y € C,/then (z|y) > 0 (Chap. V, § 3, no. 5, Lemma 6), in other
words the angle (z,y) is acute.

3) Let m(a, B) be the order of s4s8 (o, 6 € B(C)). The matrix (m(ea, 8))
is identified with the Cozeter matriz (Chap. IV, § 1, no. 9) Bf\ (W,S). If

a # (8, Prop. 3 of Chap. V, § 3, no. 4 shows that the angle («, 3) is equal
to T — ﬁ; in particular, this angle is either obtuse or equal to 7, and
(a|B) < 0. By using the list in no. 3, it follows that m(a, 8) is equal to 2,3,4
or 6.

DEFINITION 2. A subset B of R is called a basis of R if there exists a
chamber C of R such that B = B(C). If C is a chamber, B(C) is called the
basis of R defined by C.

Remarks. 4) Assertion (vi) of Th. 2 shows that the map C — B(C) is a
bijection from the set of chambers to the set of bases. Consequently, W(R)
acts simply-transitively on the set of bases.

5) Let C be a chamber of R, and let B be the corresponding basis. If
a € B, put p(a) = a” if 2o ¢ R and ¢(a) = 3a” if 2a € R. Then ¢(B) is the
basis of R™ defined by C~; this follows from the fact that the walls of C” are
the L, for a € B.
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DEFINITION 3. Let B be a basis of R. The Cartan matriz of R (relative to
B) is the matriz (n(a, 8))a,peB-

For all o € B, n(a,a) = 2. For a, f € B,

@B _ el
™ B) =215 = 281wl B)’

where m(a, 3) denotes as above the order of sos5. If @ # 3, n(e, 8) = 0,
—1,—2 or —3 (cf. no. 3).

(11)

Remarks. 6) The Cartan matrix (n(a, 3)) should not be confused with the
Coxeter matrix (m(a, 3)). Note in particular that the Cartan matrix is not
necessarily symmetric.

7) Canonical indezing. If B and B’ are two bases of R, there exists a
unique element w € W such that w(B) = B’. We have

n(w(a),w(B)) = n(a, B) and m(w(a), w(B)) = m(e, f)

for a, B € B. Consequently, the Cartan and Coxeter matrices associated to B
can be obtained from those associated to B’ by composition with the bijection

a— w(a)

from B to B'.

The Cartan and Coxeter matrices can actually be defined canonically in
the following way. Let X be the set of pairs (B, ), where B is a basis of R
and o € B. The group W acts in an obvious way on X and each orbit of
W on X meets each of the sets {B} x B in exactly one point. If I is the set
of these orbits, each basis B admits a canonical indezxing (c;);c1. Moreover,
there exists a unique matrix N = (n;;) (resp. M = (my;)), of type I x I, such
that for any basis B, the Cartan (resp. Coxeter) matrix associated to B can
be obtained from N (resp. M) by composing with the canonical indexing of
B; it is called the canonical Cartan matriz (vesp. Cozeter matriz) of R.

PROPOSITION 15. Let B be a basis of R and a an indivisible root. There
exist B € B and w € W(R) such that o = w(B).

Let C be the chamber such that B = B(C). The hyperplane L, is a wall
of a chamber C’ of R, and there exists an element of W(R) that transforms
C’ to C. We are therefore reduced to the case where L, is a wall of C. Then «
is proportional to an element 3 of R. Since a and 3 are indivisible, a = +4.
If @ = —p, then a = sg(83), hence the proposition.

COROLLARY. Let R; and Rz be two reduced root systems in vector spaces
Vi and Vs, and let By and B be bases of Ry and Ry. Let f : By — By be a
bijection that transforms the Cartan matriz of Ry to that of Ro. Then there
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exists an isomorphism F : Vi — V3 that transforms Ry to Ry and o to f(a)
for all o € B;.

Let F be the isomorphism from V; to V; that takes o to f(a) for all
a € B;. Then F transforms s, to sf(,), hence W(R;1) to W(Rz) (Th. 2), and
hence Ry to Ry (Prop. 15).

PROPOSITION 16. Let B be a basis of R, and G the subgroup of A(R)
consisting of the elements leaving B stable. Then W(R) is a normal subgroup
of A(R) and A(R) is the semi-direct product of G and W(R).

If « € R and t € A(R), then ts,t™! = 54(a); since W(R) is generated
by the s,, we see that W(R) is a normal subgroup of A(R). By transport
of structure, A(R) transforms a basis of R to a basis of R. Since W(R) acts
simply-transitively on the set of bases, every element of A(R) can be written
uniquely in the form g; g2, where g; € W(R) and g, € G.

Remarks. 8) Let Ry,...,R, be root systems in vector spaces Vy,...,V,, R
the direct sum of the R; in V HV“ C; a chamber of R;, and B; = B(C;).

It is immediate that C = HC is a chamber of R and that B(C) = UB It

follows from Th. 2 that all the chambers and bases of R are obtamed in this
way.

6. POSITIVE ROOTS

Let C be a chamber of R, and let B(C) = {a,..., o} be the corresponding
basis of R. The order relation on V (resp. V*) defined by C is the order
relation campatible with the vector space structure of V (resp. V*) for which
the elements > 0 are the linear combinations of the a; (resp. the a;’) with
coefficients > 0. An element that is positive for one of these relations is said
to be positive for C, or positive for the basis B(C). These order relations are
also defined by C, as one sees by identifying V with V* by using a scalar
product invariant under W(R). In view of Th. 2, no. 5, an element of V* is
> 0 if and only if its values on C are > 0. An element z of V is > 0 if and
only if its values on C™ are > 0, or, equivalently, if (z|y) > 0 for all y € C.

The elements of C are > 0 for C by Lemma 6 of Chap. V, § 3, no. 5.
But the set of elements > 0 for C is in general distinct from C (cf. Plate X,
Systems Ag, Ba, Go).

THEOREM 3. Every root is a linear combination with integer coefficients of
the same sign of elements of B(C). In particular, every root is either positive
or negative for C.

If a € R, the kernel L, of o does not meet C7, so « is either > 0 on the
whole of C” or < 0 on the whole of C”, hence the second assertion. It remains
to show that « is contained in the subgroup P of V generated by B(C); we
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can assume that « is indivisible. Now the group P is clearly stable under the
s, for v € B(C), hence also under W(R) by Th. 2. Since « is of the form
w(B), with w € W(R) and 8 € B(C) (cf. Prop. 15), we have o € P. Q.E.D.

Denote by R, (C) the set of roots that are positive for C. Thus,
R=R4(C)U(-R+(0))

is a partition of R.

COROLLARY. Let v be a linear combination of roots with integer coeffi-
cients, and o an indivisible root. If «y is proportional to o, then v € Za.

By Prop. 15 of no. 5, C can be chosen so that @ € B(C). By Th. 3,

= > n with ng € Z.
7 BEB(C) oh p

Thus, if 7 is proportional to o, then v = nya, which proves the corollary.

Now let S be the set of reflections s, for & € B(C) and let T be the
union of the conjugates of S under W. For @ € B(C) and w € W, the
element t = ws,w™! of T is the orthogonal reflection s associated to the
root B = w(a); conversely, for any indivisible root 8, there exists an element
w € W such that o = w™(8) € B(C) (Prop. 15) and sg = wsqw™! € T.
It follows that a bijection v from the set of indivisible roots to {£1} x T is
obtained by associating to an indivisible root § the pair (g, sg), where € = +1
if B is positive and € = —1 if 8 is negative.

On the other hand, (W, S) is a Coxeter system (Th. 2) and the results of
Chap. IV, § 1, no. 4 can be applied. We have seen that, if w is an element
of W of length (with respect to S) equal to g, there exists a subset T,, of T,
with g elements, such that, if w = s;...5, with s; € S and if

ti =81...8-18i8i—-1-...81

(for 1 <% < gq), then Ty, = {t1,...,t,}. Recall that we have also defined in
no. 4 of § 1 a number n(w,t) (for w € W and t € T) equal to +1 if ¢t ¢ T,
and to —1 if ¢t € T,. Finally, recall that, if we define a map U,, from the set
{£1} x T to itself by the formula

Uw(67 t) = (577(“’_1’ t), wtw_l)a

the map w — Uy, is a homomorphism from W to the group of permutations
of the set {1} x T (Chap. IV, §1, no. 4, Lemma 1).

PROPOSITION 17. Assume that R is reduced and let w € W and o € R.
(1) We have y(w(a)) = Uy((a))-

(if) Assume that o is positive. The root w(a) is negative if and only if

77(“’_1» Sa) = -1,

1 other words if sq € Ty-1.
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(iii) We have n(w, so) = —1 if and only if the chambers C and w(C) are
on opposite sides of the hyperplane L. In other words, the set Ty, consists
of the reflections with respect to the walls separating C and w(C).

Let 8 € B(C) and put s = sg. Clearly Ts; = {s} and consequently

Uy(e,t) = {Ei;,tj)_l) iiz 7 s (12)

On the other hand, let p = ZB%C) n,(p)y be a positive root. Put
Y€

= 2 n(s .
s = & +(s(p))y
If p # 3, there exists an element v € B(C) with v # £, such that n,(p) > 0,
and we have n(s(p)) = ny(p) > 0 (no. 1, formula (5)). Hence s(p) is positive.
We deduce immediately that

_ [ (e,88,87Y) ifp#pP
1,0(3(6-/))) = { (—8,3) if p = . (13)
Comparison of (12) and (13) now shows that Ug(1(7)) = 9(s(7)) for all roots
v and all s € S. Since S generates W, (i) follows.

On the other hand, saying that w(a) is negative is equivalent to saying
that

P(w(a)) = (1, wsew™),

or, by (i), that Uy (¥ (a)) = (=1, wsew™!). If in addition « is positive, then
P(a) = (+1,84) and Uy (¥()) = (n(w™?, s4), wsew™1), hence (ii).

Finally, by (ii), n(w,ss) = —1 if and only if one of the roots o and
w~1(a) is positive and the other negative. This is equivalent to saying that
(a)z).(w™(a)|z) = (a|).(a|w(z)) < O for all z € C, hence the first assertion
in (iii). The second assertion in (iii) follows immediately.

COROLLARY 1. Let 8 € B(C). The reflection sg permutes the positive roots
not proportional to (3.

We reduce immediately to the case in which R is reduced. In that case,
our assertion follows from (ii) and the fact that Ts, = sg.

COROLLARY 2. Assume that R is reduced. Let w € W, let g be the length of
w with respect to S (Chap. IV, § 1, no. 1), and let w = s1...84 be a reduced
decomposition of w. Let o, ..., a4 be the elements of B(C) corresponding to
S1,...,8q. Put

Gi =sq3q_1...s,~+1(a¢), 1= 1,...,(].

The roots 0; are > 0, pairwise distinct, w(6;) < 0, and every root o > 0 such
that w(a) < 0 is equal to one of the 6;.
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Let X be the set of a > 0 such that w(a) < 0. By (ii),
Card(X) = Card(Ty-1) = l(w™!) = l(w) = g.
On the other hand, if a € X it is clear that there exists ¢ € (1, ¢] such that
Sit1---8q(a) >0 and sis41...54(c) <O.

By Cor. 1, this implies that s;5;+1...84(®) = o and hence that a = 6;. The
set X is thus contained in the set of ;. Since Card(X) = g, this is possible
only if X is equal to the set of 8; and these are pairwise distinct. Hence the
corollary.

COROLLARY 3. Assume that R is reduced. There exists a unique longest
element wg in W. Its length is equal to the number of positive roots and wy
transforms the chamber C to —C. We have wg = 1 and l(wwo) = I(wo) —I(w)
for allw € W.

It is clear that —C is a chamber. Hence there exists an element wg of W
that transforms C to —C. Then wg(a) < 0 for all positive roots a and the
first two assertions of Cor. 3 are immediate consequences of Cor. 2. We have
wg(C) = C, so w3 = 1. Finally, if w € W, the length I(w) (resp. l(wwy)) is
equal, by Prop. 17 (iii), to the number of walls separating C and w(C) (resp.
wwo(C) = —w(C)). Since w(C) and —w(C) are on opposite sides of every
wall, the sum !(w) + I(wo) is equal to the total number of walls, that is to
l(’wo)

PROPOSITION 18. Let x € V. The following three properties are equivalent:

(i) z € C;

(if) z = sq(z) for all a € B(C) (with respect to the order relation defined
by C);

(ii) z > w(z) for allw € W.

Since s4(z) =  — (z,a ) and since C is the set of elements z € V such
that (x,a”) > 0 for all @ € B(C), the equivalence of (i) and (ii) is obvious. On
the other hand, it is clear that (ili) => (ii). We show that (i) = (iii). Let
z € C, and let w € W. We argue by induction on the length {(w) of w. The
case l(w) = 0 is trivial. If I(w) > 1, w can be written in the form w = w's,,
with @ € B(C) and l(w') = [(w) — 1. Then

z—w(z) =z —w(z) + ' (z — s4()).
The induction hypothesis shows that  —w’(x) is positive. On the other hand,
w'(z = 8a(z)) = w(sa(z) — 2) = —(z,a")w(a).

Now sq € Ty,-1, and Prop. 17 (ii) shows that w(a) < 0. Hence the result.
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COROLLARY. An element x € C if and only if x > w(zx) for allw € W
such that w # 1.

PROPOSITION 19. Let (8;)1<i<n be a sequnce of positive roots for the cham-
ber C such that B1 + B2 + - - - + By is a root. Then there exists a permutation
7 € &, such that, for alli € {1,2,...,n}, Br1) +Br(2) + -+ Br() 5 a T00L.
We argue by induction on n, the proposition being clear for n < 2. Put

n

B =p0+ -+ Pn Then ;(ﬂ|ﬂi) = (B]B) > 0, so there exists an index k

such that (8|8x) > 0. If B = B, then n = 1 since B; > 0 for all 7. Otherwise
B — Bk is a root (no. 3, Cor. of Th. 1); it then suffices to apply the induction

hypothesis to 8 — B = ;c B;.

COROLLARY 1. Let a € R (C). Then a € B(C) if and only if « is the sum
of two positive roots.

If o is the sum of two positive roots, Th. 3 shows that a € B(C). If
a ¢ B(C), Th. 3 shows that o = kgl B with B € B(C) for all k and n > 2.

n—1
Permuting the Gy if necessary, we can assume that kZ is a root (Prop. 19),
=1
n—1

and hence that « is the sum of the positive roots kZI B and Gy,.

COROLLARY 2. Let ¢ be a map from R to a abelian group I' having the
following properties:

1) p(—a) = —p(a) for a € R;
2) ifa € R, B € R are such that o+ 3 € R, then p(a+ ) = p(a)+¢(8).

Let Q be the subgroup of V generated by R. Then ¢ extends to a homomor-
phism from Q to I'.

Let B be a basis of R. Let 9 be the unique homomorphism from Q to I"
that coincides with ¢ on B. It suffices to show that (o) = p(a) when « is
a positive root relative to B. We have a = 81 + - - - + B, with §; € B for all
t,and B1 + -+ Br € R for all h (Prop. 19). We show that ¥(a) = ¢(a) by
induction on m. This is clear if m = 1. The induction hypothesis gives

V(B4 + Pmo1) =B+ + Pm—1),

and we have ¥(8m) = ¢(Bm), hence ¥(a) = p(a), which proves the corollary.
For any root a = 5 %%C) ngf in R, denote by Y(a) the set of 8 € B(C)
€
such that ng # 0. Moreover, observe that B(C) can be identified with the set
of vertices of the graph of the Coxeter system formed by W(R) and the s,
(cf. Chap. IV, § 1, no. 9 and Chap. V, §3, no. 2).
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COROLLARY 3. a) Let @ € R. Then Y(a) is a connected subset of B(C)
(Chap. IV, Appendix).
b) Let Y be a non-empty connected subset of B(C). Then Y. B belongs

BEY
to R.

To prove a), we can assume that « is positive. We argue by induction on
Card(Y(a)), the assertion being trivial if Card(Y(a)) = 1. By Prop. 19, there
exists 8 € B(C) such that @ — 8 € R. Let p be the largest integer > 0 such
that v = o — pB € R. Since y — 8 ¢ R and v+ pB € R, (v|8) # 0 (Prop. 9);
thus S is linked to at least one element of Y(v). But Y(a) = Y(v) U {8},
and Y(v) is connected by the induction hypothesis. Thus Y(«) is connected,
which proves a).

Now let Y be a non-empty connected subset of B(C); we show by induction
on Card(Y) that ﬁ%ﬂ is a root. The case in which Card(Y) < 1 is trivial.

Assume that Card(Y) > 2. Since X is a forest (Chap. V, § 4, no. 8, Prop. 8),
Y is a tree and has a terminal vertex 8 (Chap. IV, Appendix). The set
Y - {3} is connected, and one of its element is linked to 3. By the induction

hypothesis, a = YE{B} v € R, and since (a|8) < 0, it follows that a+3 € R
YEY —
(Th. 1). Q.E.D.

7. CLOSED SETS OF ROOTS

DEFINITION 4. Let P be a subset of R.

(i) P is said to be closed if the conditions a € P, € P,a+ B € R imply
a+pBeP.

(ii) P s said to be parabolic if P is closed and if P U (—P) = R.

(iii) P is said to be symmetric if P = —P.

Lemma 3. Let C be a chamber of R and P a closed subset of R containing
R4 (C) (in the notation of no. 6). Let X = B(C) N (=P), and let Q be the
set of roots that are linear combinations of elements of X with non-positive
integer coefficient. Then, P =R (C)UQ.

It is enough to show that PN (—R4(C)) = Q. Let —a € Q. Then « is
the sum of n elements of Y. We show, by induction on n, that —a € P.
This is clear if n = 1. If n > 1, then by Prop. 19 of no. 6 we can write
a = B+ with v € ¥ and 8 the sum of n — 1 elements of Y. By the
induction hypothesis, —3 € P; since —y € P and since P is closed, —a € P.
Thus, Q C PN (=R (C)). Conversely, let —a € PN (—R4(C)). Then « is
the sum of p elements of B(C). We show, by induction on p, that —a € Q.
This is clear if p = 1. If p > 1, then by Prop. 19, we can write a = 8 + v
with v € B(C) and 3 a root that is the sum of p — 1 elements of B(C). Since
—v = B+ (—a) and since P is closed, —y € P, hence v € Y. Moreover,
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—B =~v+ (—a) so —f8 € P since P is closed. By the induction hypothesis,
-B€Q,s0 —a=—-F—+€Q. Thus, PN (-R4(C)) C Q.

PROPOSITION 20. Let P be a subset of R. The following conditions are
equivalent:

(i) P is parabolic;

(it) P 4s closed and there exists a chamber C of R such that P D R (C);

(iii) there exist a chamber C of R and a subset X of B(C) such that P
is the union of R4 (C) and the set Q of roots that are linear combinations of
elements of X' with non-positive integer coefficients.

(ii) = (iii): this follows from Lemma 3.

(ili) = (i): we adopt the assumptions and notation of (iii). It is clear
that P U (—P) = R. We show that, if a, 8 € P are such that a + 8 € R, then
a+ B € P. This is obvious if the root a + (3 is positive. Assume that o+ 3 is

negative. Then o+ = X%C) N7, with n, < 0. But the coefficient of every
~YEB

element v of B(C)-X in a or # is > 0; hence n, = 0 if v € B(C)- X, so0
at+pBeQCP.

(i) = (ii): assume that P is parabolic. Let C be a chamber such that
Card(PNR.4(C)) is as large as possible. Let @ € B(C) and assume that a € P,
so that —a € P. For all 8 € PN R4 (C), B is not proportional to a (for the
hypothesis 8 = 2a would imply that & = 2a + (—a) € P since P is closed).
Thus s4(8) € R+(C) (no. 6, Cor. 1 of Prop. 17). If we put C' = 5,(C),
then 8 = s4(3a(0)) € so(R+(C)) = R4+(C), so —a € PN R4 (C’) and hence
Card(P N R4+(C’)) > Card(P N R4 (C)). This is absurd, since & € P. Thus
B(C) C P, and consequently R, (C) C P by Prop. 19 and the fact that P is
closed.

COROLLARY 1. Let P be a subset of R. The following conditions are equiv-
alent:

(i) there exists a chamber C such that P = R, (C);
(i) P 4s closed and {P,—P} is a partition of R.
The chamber C such that P = Ry (C) is then unique.

If P =R4(C), C is the set of z* € V* such that (z*,z) > 0 for all z € P,
hence the uniqueness of C.

COROLLARY 2. Assume that V is equipped with the structure of an ordered
vector space such that, for this structure, every root of R is either positive
or negative. Let P be the set of positive roots for this structure. Then there
exists a unique chamber C of R such that P = R4 (C).

Indeed, P satisfies condition (ii) of Cor. 1.

This corollary applies in particular when the order being considered is
total, the condition on R then being automatically satisfied. Recall that such
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an order can be obtained, for example, by choosing a basis (e;)1gign of V
and taking the lexicographic order on V, so z = Z &ie; is = 0 if all the &; are
7

0, or if £ > 0 for the smallest index ¢ such that &; # 0.

COROLLARY 3. A subset B of R is a basis of R if and only if the following
conditions are satisfied:

(i) the elements of B are linearly independent;

(ii) every root of R is a linear combination of elements of B in which the
coefficients are either all positive or all negative;

(iii) every root of B is indivisible.

We already know that the conditions are necessary (no. 5, Th. 2, and
no. 6, Th. 3). Assume that conditions (i), (ii), (iii) are satisfied. Let P be the
set of roots that are linear combinations of elements of B with coefficients
> 0. Since P satisfies condition (ii) of Cor. 1, there exists a chamber C such
that P = R (C); let B = B(C), and let X and X’ be the convex cones
generated by B and B’. Then

BCPCX and B CPCX,

which shows that X and X’ are both generated by P, and hence coincide. But
the half-lines generated by the elements of B (resp. by B’) are the extreme
generators of X (resp. X'); since such a half-line contains only one indivisible
root, B = B'.

COROLLARY 4. Let B be a basis of R, B’ a subset of B, V' the vector
subspace of V generated by B', and R’ = RN V'. Then B’ is a basis of the
root system B’.

This follows immediately from Cor. 3 and the Cor. of Prop. 4.
We call R/ the root system generated by B’.

COROLLARY 5. Let B be a basis of R, Ay, As,..., A, pairwise orthogonal
subsets of B, and A = Aj UAsU---UA,. Then every root o that is a linear
combination of elements of A is actually a linear combination of elements of
one of the A;. In particular, if R is irreducible, there is no partition of B into
pairwise orthogonal subsets.

Let Eq,...,E., E be the vector subspaces of V generated by Aj,..., A, A,
respectively. By Cor. 4, we can assume that E = V. Then, by Th. 2 (vii) of
no. 5, the E; are stable under W(R), so R is the union of the RNE; (no. 2,
Prop. 5).

COROLLARY 6. We adopt the hypotheses and notation of Prop. 20. Let V
be the vector subspace of V generated by X. Then PN (—P) = QU (—Q) =
ViNR is a root system in Vi with basis X.
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We have PN (-P) = (R4 (C)UQ)N((-R+(C))U(-Q)) = QU(-Q). Th.
3 proves that QU (—Q) = V; N R. Finally, X' is a basis of the root system
ViNR by Cor. 4.

PROPOSITION 21. Let C (resp. C') be a chamber of R, X (resp. X’) a subset
of B(C) (resp. B(C")), Q (resp. Q') the set of linear combinations of elements
of X' (resp. X') with negative integer coefficients, and P = QU R (C) (resp.
P’ = Q'URL(C')). If there exists an element of the Weyl group transforming
P to P/, then there exists an element of the Weyl group transforming C to C'
and X to X'.

We reduce immediately to the case P = P’. Let V; be the vector subspace
of V generated by P N (—P). Then X and X’ are bases of the root system
Ri = PN (—P) in V; (Cor. 6 of Prop. 20). Hence there exists g; € W(R;)
such that g;(X) = 2. It is clear that g, is induced by an element g of W(R)

that is a product of the symmetries s, with ¢ € X. Let v = 5 %%c) caf be
€

an element of P-R;. Then cg > 0 for at least one 8 € B(C) - X. Moreover,
if o € X, then s,(v) — v € Vi, s0 s,(7y) has at least one coordinate > 0
with respect to B(C) (no. 1, formula (5)), hence s,(v) € R4+ (C) and finally
so(7) € P=Ry. It follows that P-R, is stable under the s,, o € X, and
hence under g, so g(P) = P. We are thus reduced to proving the proposition
when P =P’ and ¥ = 5. In this case, Q = Q', s0 R+ (C) =P-Q =P-(Q’
= R4 (C’), and hence C = C’ (Cor. 1 of Prop. 20).

COROLLARY. Let P,P’ be two parabolic subsets of R transformed into each
other by an element of the Weyl group. If there exists a chamber C of R such
that R4+ (C) C P and R+ (C) C P/, then P = P'.

This follows from Lemma 3 and Prop. 21 since the only element of W(R)
transforming C to C is 1, cf. no. 5, Th. 2.

PROPOSITION 22. Let P be a closed subset of R such that PN (—P) = @.
Then there exists a chamber C of R such that P C R, (C).

1) In view of the Cor. of Th. 1, no. 3, the assumptions a € P, 8 € P,
(a|B) < 0 imply that a + 8 € P.

2) We show that no sum a3 + -+ + a4 (¢ > 1) of elements of P is zero.
We proceed by induction on q. The assertion being clear for ¢ = 1, assume
that ¢ > 2. If a1 + -+ - + ag = 0, then

_a1=a2+...+aq’

so (—aylag+---+aq) > 0, hence there exists j € (2, ¢) such that (ai1]|e;) < 0.
By part 1) of the proof, a; + a; € P, and the relation (a1 + ;) + % ;=0
3 ’\7

contradicts the induction hypothesis.
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3) We show that there exists a non-zero element « in V such that (y|a) > 0
for all @ € P. If not, the result of 1) would show that an infinite sequence
i, Qs,... of elements of P could be found such that

Bi=ar+--+a; €P

for all ¢; there would exist two distinct integers %, j such that 8; = 3;, which
would contradict the result of 2).

4) To prove the proposition, it is enough (Cor. 2 of Prop. 20) to show
that there exists a basis (ax)1<k<i of V such that, for the lexicographic order
defined by this basis, every element of P is > 0. We proceed by induction on
Il =dimV, and assume that the proposition is established for all dimensions
< l. Let v € V be such that v # 0 and (y|a) = 0 for all & € P (cf. 3)). Let
L be the hyperplane orthogonal to vy, and V' the subspace of L generated by
RNL. Then RNL is a root system in V' and PNL is closed in R N L. By
the induction hypothesis, there exists a basis (01, ..., Br) of V' such that the
elements of P N L are > 0 for the lexicographic order defined by this basis.
Then any basis of V whose first I’ + 1 elements are v, 31,..., 0y and whose
remaining elements are in L has the required property.

PROPOSITION 23. Let P be a subset of R and Vi (resp. I') the vector
subspace (resp. the subgroup) of V generated by P. The following conditions
are equivalent:

(i) P is closed and symmetric;
(ii) P s closed, and P is a root system in Vi;
(i) 'NR = P.

Assume that these conditions are satisfied. For any o € P, let ay” be the
restriction of a” to Vi. Then the map a — a1 is the canonical bijection from
the root system P to P~.

(iii) = (i): clear.

(i) = (ii): assume that P is closed and symmetric. First, P satisfies (RS;)
in V;. We show that, if o, 8 € P, then s,(8) € P. This is clear if & and 3
are proportional. Otherwise, s,(8) = 8 — n(8,a)a and 8 — pa € R for all
rational integers p between 0 and n(g, ) (Prop. 9, no. 3), so

ﬁ_n(ﬁ,a)a ep

since P is closed and symmetric. Thus, $q,q,(P) = P, and P satisfies (RSyr).
It is clear that P satisfies (RSiy). Thus, P satisfies (ii), and we have proved
the last assertion of the proposition at the same time.

(ii) = (iii): we show that, if condition (ii) is satisfied, then ' "R = P.
It is clear that P C I'NR. Let 3 € I'NR. Since 8 € I" and P = —P,
B=ai+as+- -+ o with ay,...,ar € P. We shall prove that 8 € P. This
is clear if k = 1. We argue by induction on k. We have
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k
0< (816) = 2 (Blw),

0 (B|a;) > 0 for some index i. If 8 = a;, then 8 € P. Otherwise, 8 —a; € R
(Cor. of Th. 1, no. 3), so B —a; € P by the induction hypothesis, hence 8 € P
since P is closed.

The conditions of Prop. 23 can be realised with Vi = V and yet P # R. For

example, this is the case when R is a system of type Gz and P a system of type
As; cf. Plate X.

PROPOSITION 24. Let R’ be the intersection of R with a vector subspace of
V, so that R’ is a root system in the vector subspace V' that it generates (cf.
Cor. of Prop. 4, no. 1). Let B’ be a basis of R'.

(i) There exists a basis of R containing B’.

(ii) R/ is the set of elements of R that are linear combinations of elements
of B.

Assertion (ii) is clear. We prove (i). Let (e1,€2, .. .,€;) be a basis of V such
that B’ = (€p+1,€p+2,---,€1). The lexicographic order on V corresponding
to this basis defines a chamber C of R. It is clear that every element of B’ is
minimal in R4 (C). Thus B’ C B(C).

8. HIGHEST ROOT

PROPOSITION 25. Assume that R is irreducible. Let C be a chamber of R,
and let B(C) = {as,...,} be the corresponding basis.

l l
(i) There ezists a oot & = Z n;; such that, for every root Z piQ;, we

have ny = p1,ng = pa,..., Ny > pl In other words, R has a largest element
for the ordering defined by C.

(i) We have & € C.

(iii) We have (&|&) = (a| ) for every root c.

(iv) For every positive root &' not proportional to &, we have n(a/,&) =0
or 1.

1) Let a = Z n;ag, B = Z pio; be two maximal roots for the ordering

defined by C. We shall prove that a = (3, which will establish (i).
2) If (a|oy) < O for some index i, it follows that either o + a; € R or

a = —a; (Cor. of Th. 1, no. 3), and both possibilities are absurd by the
maximality of a. Thus (a|a;) > 0 for all 4.

3) If @ < 0, then o < —a, which is absurd. Thus n; > 0 for all ¢. Let J
be the set of ¢ such that n; > 0, and J’ the complement of J in {1,2,...,1}.
Then J # @. If J were non-empty, there would exist an ¢ € J and an ¢/ € J/
such that (a; | @) <0 (Cor. 5 of Prop. 20, no. 7); we would then have
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(aay) = 2 ni(eu|aw) <0
i€l

since (o | ax) < 0 whenever j and k are distinct, which would contradict 2).
Thus J' = @ and n; > 0 for all 1.

4) We have (8] a;) = 0 for all i by 2). We cannot have (8| a;) = 0 for all
i since B # 0. We deduce from 3) that

(Bla) =L ni(B|ai) > 0.

If y=a—8 €R, either a > B or B > a (Th. 3, no. 6), which contradicts
the maximality of a and 8. Thus o = 8 (Cor. of Th. 1, no. 3).

5) By 2), & € C. We shall prove that (o’|a’) < (&| &) for every o € R.
Since C is a fundamental domain for W(R), we can assume that o/ € C. We
have & —a’ > 0,50 (&—a’ |z) = 0 for all x € C. In particular (&—o/ |&) > 0
and (& — o' |a’) > 0, hence (&| &) > (¢’ |&) > (&' |&'). Thus n(a/, &) must
be equal to 0, 1 or —1 if &' is not proportional to &. If &' > 0, then (&|a’) > 0
by 2), so n(e/, &) > 0 and n(a’, &) must be either 0 or 1. Q.E.D.

Remark. The root

a = anal
3

in (i) is said to be the highest root of R (with respect to C). Note that, by
(i), we have n; > 1 for all 1.

9. WEIGHTS, RADICAL WEIGHTS

Let | = dimV. Denote by Q(R) the subgroup of V generated by R; the

elements of Q(R) are called the radical weights of R. By Th. 3 of no. 6, Q(R)

is a discrete subgroup of V of rank I, and every basis of R is a basis of Q(R).
Similarly, the group Q(R") is a discrete subgroup of V* of rank 1.

PROPOSITION 26. The set of x € V such that (x,y*) € Z for all y* €
Q(R") (or, equivalently, for all y* € R”) is a discrete subgroup G of V con-
taining Q(R). If B is a basis of R”, the basis of V dual to B’ is a basis of
G.

Let € V. The following three properties are equivalent:

(i) (z,y*) € Z for all y* € Q(R");

(ii) (z,y*) € Z for all y* € B;

(iii) the coordinates of z with respect to the dual basis of B’ are in Z.

We deduce from this that the basis dual to B’ is a basis of G. On the other
hand, (RSi) proves that R C G, so Q(R) C G.

The group G of Prop. 26 is denoted by P(R), and its elements are called the
weights of R. We can also consider the group P(R") of weights of R".
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By Algebra, Chap. VII, 2nd edn., § 4, no. 8,
P(R)/Q(R), P(R)/Q(R)

are finite groups in duality over Q/Z, and hence are isomorphic. The common
order of these two groups is called the connection index of R (or of R").

If R is a direct sum of root systems R;, the group Q(R) (resp. P(R)) is
identified canonically with the direct sum of the Q(R;) (resp. P(Ry)).

PROPOSITION 27. Let Ry be a subset of R, Q1 the subgroup of Q(R) gen-
erated by Ry, and Wy the subgroup of W(R) generated by the so (a € R;).
Ifp e P(R) and w € Wy, then p — w(p) € Q1.

If w = s, with o € Ry, then

p—w(p) = (p,a)a €Za C Q.

If w= 34,5 - Sa,, With a1,...,a, € Ry, it is still true that p—w(p) € Q;,
as we see by induction on 7.

The group A(R) leaves P(R) and Q(R) invariant, and hence acts on the quo-
tient P(R)/Q(R). By Prop. 27, the group W(R) acts trivially on P(R)/Q(R).
Passing to the quotient, we see that the quotient group A(R)/W(R) (cf. Prop.
16, no. 5) acts canonically on P(R)/Q(R).

10. FUNDAMENTAL WEIGHTS, DOMINANT WEIGHTS

Assume that R is reduced. Let C be a chamber of R, and let B be the corre-
sponding basis of R. Since R is reduced, B"= {a }4¢B is a basis of R". The
dual basis (Wy)aep of B”is thus a basis of the group of weights; its elements
are called the fundamental weights (relative to B, or to C); if the elements
of B are denoted by (a, ..., q;), the corresponding fundamental weights are
denoted by (w1, ...,w;).

Let z € V. Then, z € C if and only if (z,a”) > 0 for all a € B. It follows
that C is the set of linear combinations of the w, with coefficients > 0.

The entries n(a, 8) = (o, 8") of the Cartan matrix are, for fixed a, the
coordinates of a with respect to the basis (Wg)gen:

=>.n a, Bwg. 14
a= 3 n(a, B (1)
The Cartan matrix is thus the transpose of the matrix of the canonical in-
jection
Q(R) — P(R)
with respect to the bases B and (Wa)aep of the Z-modules Q(R) and P(R).
A weight @ is said to be dominant if it belongs to C, in other words if
its coordinates with respect to (W, )aecp are integers > 0, or equivalently if
g(w) < wfor all g € W(R) (no. 6, Prop. 18). Since C is a fundamental domain
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for W(R) (Th. 2), there exists, for any weight @, a unique weight @’ such that
@' is a transform of @ by W(R).

We have 28
(way ﬂv> = (Wa | W) = 6043

for o, 8 € B (d4p denoting the Kronecker symbol), hence

$6(Ba) =T~ 0pB  a0d  (@alB) = 5(B1H)bap.

In other words, @, is orthogonal to B for B # «, and its orthogonal projection

onto Ra is a. Since @, € C, (Wa|wWg) > 0 for o, B € B, ie. the angle

(w;,\wﬁ) is acute or a right angle. The dominant weights are the @ € V such
that 2(w|a)/(a| @) is an integer > 0 for all & € B.

PROPOSITION 28. Let B be a basis of R, B’ a subset of B, V' the vector
subspace of V generated by B’, R’ = RNV’ (which is a root system in V'),
R’" the inverse root system (which is identified with the canonical image of
R’ in R"), V; the orthogonal complement of R'” in V, and p the projection of
V onto V' parallel to V1. Then, Q(R’) = QR) N V', P(R/) = p(P(R)). The
set of dominant weights of R’ is the image under p of the set of dominant
weights of R.

Indeed, Q(R) is the subgroup of V with basis B, Q(R’) is the subgroup of
V'’ with basis B’ (no. 7, Cor. 4 of Prop. 20) from which Q(R') = Q(R)NV' is
immediate. Ifw € P(R) and a € R/, (p(@), ") = (@, ") € Z, so p(w) € P(R'),
and hence p(P(R)) C P(R'). If &’ € P(R’), @ extends to a linear form @ on
V* vanishing on (B—B’)"; we have (0, a”) € Z for all « € B, sow € P(R), and
w' = p(w); hence P(R’) C p(P(R)). Thus P(R') = p(P(R)), and the assertion
about dominant weights is proved in the same way.

PROPOSITION 29. Let p be half the sum of the roots > 0.

(i) p= 2. Wa; this is an element of C.
a€B

(ii) sa(p) =p— a for all a € B.

(iii) (2p| @) = (a|a) for all a € B.

Since R is reduced, s4(R+(C) — {a}) = R+(C) — {a} and s,(a) = —«
for @ € B (no. 6, Cor. 1 of Prop. 17), so s4(2p) = 2p — 2a. Since s4(p) =
p— {p,a”), we see that

(pa") =1= (B%:Bwﬁ,d%

Hence, p = %:L_Ug, and consequently p € C. Finally, (iii) is equivalent to
(p,a”) = 1.
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COROLLARY. Let o be half the sum of the elements > 0 of R (for BY). For
alla € V, the sum of the coordinates of a with respect to the basis B is (o, o).

Ifa € R, this sum is equal to £ X~ n(a, B).
! ! 2 per; (C) (o 8)

Interchanging the roles of R and R~ above, we have (a,0) = 1 for all
a € B, hence the corollary.

11. COXETER TRANSFORMATION

Let C be a chamber of R, let {a1, ..., a;} be the corresponding basis of R, and
let ¢ = Sqy - - Sq,- The element ¢ of W is called the Cozeter transformation
of W defined by C and the bijection ¢ — «; (Chap. V, § 6, no. 1). Its order
h is called the Cozeter number of W (or of R).

PROPOSITION 30. Assume that R s irreducible. Let m be an integer be-
tween 1 and h — 1 and prime to h. Then exp( 2“,:"‘) is an eigenvalue of ¢ of

multiplicity 1.

In particular, m is an exponent of W, cf. Chap. V, § 6, no. 2.
We first prove a lemma:

Lemma 4. For all w € W, the characteristic polynomial of w has integer
coefficients.

We know (no. 6, Th. 3) that {a1,...,a;} is a basis of the subgroup Q(R)
of V generated by R. Since w leaves Q(R) stable, its matrix with respect
to {aa,...,a;} has integer entries; hence its characteristic polynomial has
integer coefficients.

Let P be the characteristic polynomial of c. The above lemma shows that the
coefficients of P are integers. By Chap. V, § 6, no. 2, Cor. 2 of Prop. 3, the
primitive hth root of unity z = exp(%Z) is a simple root of P. Every conjugate
of z over Q is therefore also a simple root of P. But we know (Algebra, Chap.
V) that the primitive hth roots of unity are conjugate over Q. They are thus

all simple roots of P, which proves the proposition.

PROPOSITION 31. Assume that R is irreducible and reduced, and let § =
nyag +- - -+mnyoy be the highest root of R (cf. no. 8). Thenny+---+n; = h—1.

Let R4 be the set of positive roots relative to C. Then (no. 10, Cor. of
Prop. 29):

1
n+-4n = EanRJrn(ﬂ’a)
1 (a|B)
= 1 - = ]_ .
+ 2 a€R4,a#B 'Il(,B, a) + a€Ry,a#p (O{ | Ol)

By no. 8, Prop. 25 (iv), for all « € R4 and a # 3, n(a,8) =0 or 1, so

n(a, B)? = n(e, B), that is 4(([;1|Iﬁﬁ) - %%lﬁﬁ)z Hence:
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- _(a]p)*
n1+...+m+1—2+2a€R§a¢g(a|a)(ﬂ|ﬁ)
2
—2 3 O (510 & (a2

acRy (a|)(B]B)
By Chap. V, § 6, no. 2, Cor. of Th. 1,

> (| 8)* = h(B]| B)

acR ' || a ||

el

sony+---+n+1=h.

PROPOSITION 32. Assume that R is irreducible, and that all roots have the
same length. Let a € R. The number of elements of R not orthogonal to o is
4h — 6.

Let R’ be the set of roots not proportional to and not orthogonal to a.
By Chap. V, § 6, no. 2, Cor. of Th. 1,

(@]e)® + (] —a)* + ﬁg,(a 18)? = h(a]a)?,

that is
2 (@] B)? = (h—2)(a| ).

BER/

If B € R/, then (| B) = £1(a|a) by the list in no. 3. Hence
1
ZCard R'=h—-2, CardR =4h -8,
and the number of roots not orthogonal to « is Card R’ + 2 = 4h — 6.

PROPOSITION 33. Assume that R is irreducible and reduced. Put s,, = si,
and let I be the subgroup of W generated by c = s1...5;.

(i) Let 6; = s181-1 ... 8i+1(w) (i =1,...,1). Then, 6; > 0,c(6;) < 0.

(i) If o is a Toot > O such that c(a) < 0 then a is equal to one of the 0;.

(iii) The family (6;)1<i<i @S a basis of Q(R).

(iv) Let §2; be the orbit of 6; under I'. The sets §2; are pairwise disjoint,
they are all the orbits of I' on R, and each has h elements.

Observe first that (sq,...,8;) is a reduced decomposition of ¢ (Chap. IV,
§ 1, no. 1) with respect to the set S of the s;. Indeed, otherwise there would
exist a subset X = S-{j} of { — 1 elements of S such that ¢ € Wx, which
would contradict Cor. 2 of Prop. 7 of Chap. IV, § 1, no. 8.

Applying Cor. 2 of Prop. 17 of no. 6 to ¢ gives assertions (i) and (ii).

Let Q; be the subgroup of Q(R) generated by the a;, j > 4. It is immediate
that Q; is stable under the s;, j > ¢, and that s;(o;) = a; mod. Q; for j > 4.
Hence:

0; =si...8+1(;) = @; mod. Q;.



184 ROOT SYSTEMS Ch. VI

In other words, there exist integers c;; such that
0; = a; + 2 cijay.
>

Part (iii) follows immediately.
h—1
Finally, let a be a root. The element kZO c*(a) is invariant under ¢, and

hence zero (Chap. V, § 6, no. 2). The c*(a) cannot therefore all have the
same sign, and there exists a k such that c*(a) > 0 and c¢**1(a) < 0. By (i),
c*(a) is one of the 8;. Thus every orbit of I on R is one of the £2;. Extend
(z|y) to a hermitian form on V @ C. Each orbit of I" in R has at most A
elements, and there are at most ! distinct orbits, by the above remarks. Now
(Chap. V, §6, no. 2, Theorem 2, ii)), the cardinal of R is equal to hl, which
immediately implies (iv).

12. CANONICAL BILINEAR FORM

We have seen (no. 1, Prop. 3) that the symmetric bilinear form

(32, y) = BR(:E, y) = Q§R<av,x) <av? y)
on V is non-degenerate and invariant under A(R). Interchanging the roles of R
and R, it follows that the symmetric bilinear form (z*,y*) — Br-(z*,y*) =

ZR(a,z*)(a, y*) on V* is non-degenerate and invariant under A(R).
a€

The inverse form of Br- (resp. Br) on V (resp. V*) will be called the canonical
bilinear form on V (resp. V*) and denoted by ®r (resp. Pr-). It is non-degenerate

and invariant under A(R). Let o be the isomorphism from V to V* defined by Bg-.
Then, for x € V and y € V:

!PR(.’E, y) = BR'(U(:E),U(?})) = QZE:R(Q’U(:E))(O‘,J(:’J))'

But (@, 0(z)) = Br-(c(a),o(z)) = $r(e, z). Hence,
r(z,y) = ERqu(a, z)®(a, y). (16)

In view of Prop. 7 of no. 2, ®r is the only non-zero symmetric bilinear form invariant
under W(R) which satisfies the identity (16).
For B € R, (16) gives

r(8,0) = T o f) = 12r(6,6) T, (e, B,

a€R

hence

48R (8,0)" = 2 n(a, B)* (17)

a€R

Moreover, by Lemma 2 of no. 1, we have, for z,y € V:
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2a 2a
BR($7 y) - agRQR (éR(a, a) ) .’B) (@R(O{, a) ) y)
=4 ) &r(a,z)Pr(0,y)Pr(a, )72
a€R
It follows that, if R is irreducible, there exists a constant y(R) > 0 such that
2 Pr(o 2)®r (0, y)Pr (0, @) 7 = 1(R)Pr(x,Y). (18)
By the definition of y(R), we have Br(z,y) = 4y(R)®Pr(z,y), so
Pr-(¢",y") = (47(R))'Br-(z",y")
for *,y* € V*. This proves that v(R) = v(R"). On the other hand, for 8 € R,
Pr-(6,6) = ((R) ™ X (6,0)°
a€R
Pr (o, f)°

_ -1
=R X G GAP
so, by (16),
Pr-(67,8°) = v(R) ' Pr(B, B) *Pr (B, B)
or finally

Pr(6,B)Pr- (8,0 = v(R) ™. (19)

Further, if all the roots of R have the same length A for $r, (16) and (18) show
that

y(R) =A% (20)
Moreover, if h is the Coxeter number of W, the Cor. of Th. 1 of Chap. V, § 6, no.
2 shows that:

2
hdg(z,z) = Q§R (m, %) for all z € V.

Comparing with (16), we deduce that
A=h"Y2 or 4(R) = h% (21)

Finally, formula (19) shows that the roots of R”have length X for $r-.

§ 2. AFFINE WEYL GROUP

In this paragraph (except in no. 5), we denote by R a reduced root system
in a real vector space V. We denote by W the Weyl group of R; we identify
it with a group of automorphisms of the dual V* of V (§ 1, no. 1), and we
provide V* with a scalar product invariant under W. Let E be the affine
space underlying V*; for v € V*, we denote by t(v) the translation of E by
the vector v. Finally, we denote by P (resp. Q) the group of translations ¢(v)
whose vector v belongs to the group of weights P(R") (resp. to the group of
radical weights Q(R")) of the inverse root system R” of R.
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For a € R and k € Z, let L, i be the hyperplane of E defined by:
Lok = {z € E|(a,z) =k}
and let s, be the orthogonal reflection with respect to L k. Then
Sak(z) =2 — (o, z) — k)a” = sq0(x) + ka”
for all x € E. In other words,
Sak = t(ka) o sq4 (1)

where s, is the orthogonal reflection with respect to the hyperplane
Lo = Lq,o, i.e. the reflection associated to the root a.

Formula (1) shows that s, does not depend on the choice of scalar
product.

DEFINITION 1. The group of affine transformations of E generated by the
reflections sq.x for o € R and k € Z is called the affine Weyl group of the
root system R and denoted by W, (R) (or simply by W, ).

PROPOSITION 1. The group W, is the semi-direct product of W by Q.

Since W is generated by the reflections s, it is contained in W,. On the
other hand, t(a”) = $4,1 © 8o if @ € R, which shows that Q C W,.

Since W leaves Q(R") stable (§ 1, no. 9), the group G of affine transfor-
mations generated by W and Q is the semi-direct product of W by Q. Now
G C W, from above and sqx € G for all @ € R and k € Z by (1). It follows
that W, = G.

PROPOSITION 2. The group W,, with the discrete topology, acts properly
on E and permutes the hyperplanes Ly (for « € R and k € Z).
Since Q(R") is a discrete subgroup of V*, the group Q acts properly on
E. Hence, so does W, = W.Q, since W is finite. Moreover, for a, 3 € R and
keZ:
Sﬁ(La’k) = L%k with v = Sﬁ(a) €R,
t(87)(La,k) = La,k+n(a,p)s

where n(a, 8) = (67, @) is an integer, hence the second assertion.

We can thus apply the results of Chapter V, § 3 to W, acting on E. To
avoid any confusion with the chambers of the Weyl group W in V*, we shall
call the chambers determined by the system of hyperplanes Ly x (for a € R
and k € Z) in E alcoves. The group W, thus acts simply transitively on the
set of alcoves and the closure of an alcove is a fundamental domain for W,
acting on E (Chap. V, § 3, no. 2, Th. 1 and no. 3, Th. 2). It is clear that
the Weyl group W is identified with the canonical image U(W,) of W, in
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the orthogonal group of V* (cf. Chap. V, § 3, no. 6). It follows that W,
is essential (Chap. V, § 3, no. 7) and that W, is irreducible if and only if
the root system R is (§ 1, no. 2, Cor. of Prop. 5). If R is irreducible, every
alcove is an open simplex (Chap. V, § 3, no. 9, Prop. 8). In the general case,
the canonical product decomposition of the affine space E (Chap. V, § 3,
no. 8) corresponds to the decomposition of R into irreducible components. In
particular, the alcoves are products of open simplexes.

Note also that the Cor. of Th. 1 of Chap. V, § 3, no. 2 shows that the
Sa,k are the only reflections in W,.

2. WEIGHTS AND SPECIAL WEIGHTS

PROPOSITION 3. The special points (Chap. V, § 3, no. 10, Def. 1) of W,
are the weights of R’

Let zo € E and let @ € R. The hyperplane L parallel to Kera and
passing through zo has equation (o, z) = (o, zo). To be equal to some Lg,
it is necessary on the one hand that o« and 3 are proportional, and so, since R
is reduced, that S = t+q, and on the other hand that (o, o) is an integer. It
follows immediately that zg is a special point of W, if and only if {c, z¢) € Z
for all & € R, in other words, if and only if 2o € P(R") (§ 1, no. 9).

COROLLARY. (i) Ifw € P(R"), there exzists an alcove C such that @ is an
extremal point of C.

(ii) If C 4s an alcove, C N Q(R") reduces to a single point and this is an
extremal point of C.

This follows from Prop. 3, in view of the Cor. of Prop. 11 of Chap. V,
§ 3, no. 10 and Prop. 12 of Chap. V, § 3, no. 10.

PROPOSITION 4. Let C' be a chamber of R

(i) There ezists a unique alcove C contained in C' such that 0 € C.

(ii) The union of the w(C) for w € W is a neighbourhood of 0 in E.
(iii) Every wall of C' is a wall of C.
This follows from Prop. 11 of Chap. V, § 3, no. 10.
Assume now that R is irreducible. Let (o;)ie1 be a basis of R (§1, no. 5,

Def. 2), and let (w;);c1 be the dual basis. The w; are the fundamental weights
of R™ for the chamber D’ of R corresponding to the basis (a;). Let

a= Z n; 0
i€l

be the highest root of R (§ 1, no. 8), and let J be the set of ¢ € I such that
n; = 1.

PROPOSITION 5. Let C be the alcove contained in C' and containing 0 in
its closure (Prop. 4).
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(i) C is the set of x € E such that (a;,z) > 0 for alli € I and (&,z) < 1.

(ii) The set CNP(R") consists of 0 and the ; fori € J.

Let D be the set of z € E such that (&,z) < 1 and set C; = C'ND.
Since 0 € C, we have C C D and hence C C C;. We are going to show
that, for all & € R and all k£ € Z, the sets C and C; are on the same side
of the hyperplane L, . This will prove that C; C C and so will establish
assertion (i). If k& = 0, the whole of the chamber C’ is on one side of L,
which establishes our assertion in this case. If k # 0, we may, by replacing o
by —a, assume that k& > 0. Then (o, z) < k on C, since 0 € C. On the other
hand, & — « is positive on C’ (§ 1, no. 8, Prop. 25). Thus, for y € Cy, we
have {a,y) < (&,y) < 1 < k. Consequently, C and C; are on the same side
of La,k-

Now let w € P(R"). Then w = ;piwi, with p; € Z (§ 1, no. 10), and

w € C' if and only if the integers p; are positive. If w € C’, then @ € C if and
only if (&,@) = 2_n;p; is < 1, hence (ii).
(3

COROLLARY. The alcove C is an open simplexr with vertices 0 and the
w; / n;, 1 €L
This follows from (i).

3. NORMALISER OF W,

In this no., we assume that the chosen scalar product on V is invariant not
only under W but under the whole of the group A(R). We identify A(R) and
A(R).

Let G be the normaliser of W, in the group of displacements of the affine
euclidean space E. If g is a displacement of E, and s is the orthogonal reflection
with respect to a hyperplane L, the displacement gsg~! is the orthogonal
reflection with respect to the hyperplane g(L). It follows that G is the set of
displacements of E that permute the hyperplanes L x (for « € R and k € Z).

Now, the group of automorphisms of E is the semi-direct product of the
orthogonal group U of V* and the group T of translations. If u € U and
v € V*, the hyperplane Ly, x is transformed by g = uot(v) into the hyperplane
with equation

(tu (@), z) = k + (a,v).

Consequently, g € G if and only if, on the one hand *u permutes the roots, in
other words belongs to A(R), and on the other hand (c,v) € Z for all « € R,
that is v € P(R"). In other words, the group G is the semi-direct product of
A(R) by P. Since Q C P and W C A(R), the quotient group G/W, is the
semi-direct product of A(R)/W by P(R")/Q(R"); it is immediately checked
that the corresponding action of A(R)/W on P(R")/Q(R") is the canonical
action (§1, no. 9).
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We denote by W/, the subgroup of G formed by the semi-direct product of
W by P. This is a normal subgroup of G, and G/W?, is canonically isomorphic
to A(R)/W; moreover, the canonical map from P(R") to W, /W, gives by
passing to the quotient an isomorphism from P(R")/Q(R") to W, /W,.

Now let C be an alcove of E, and let G¢ be the subgroup consisting of the
elements g € G such that g(C) = C. Since W, is simply-transitive on the al-
coves, the group G is the semi-direct product of G¢ by W,. The corresponding
isomorphism from G/W, to G¢ gives rise in particular to a canonical iso-
morphism from P(R")/Q(R") to the group I'c = Gc NWJ,.

Assume that R is irreducible, and retain the notation of Prop. 5 of no. 2.
Put Ry = R, and let R; (i € I) be the root system generated by the a;, for
J # 4. For i =0 (resp. ¢ € I), let w; be the unique element of W(R;) (identified
with a subgroup of W) which transforms the positive roots of R; relative to
the basis (a;);x; into negative roots (§ 1, no. 6, Cor. 3 of Prop. 17).

PROPOSITION 6. For all i € J, the element v; = t(w;)w;wq belongs to I'c
and the map i — 7; is a bijection from J to I'c—-{1}.
We remark first of all that the root w;(&) is of the form

nio,; + E bijaj,
J#

and hence is positive.
We show that, if ¢ € J, then y; € I'c. Indeed, let a € C and b = 7;(a). For
1<j<landj#1,

(b, ) = (@; + wiwo(a), o) 2)
= (wo(a), wi(ay)) >0
since wo(a) € —C' and w;(c;) is negative. On the other hand,
(b, ) = 1+ (wo(@), wi(e)) > 1+ (wio(a), &) > 0 (3)

since wo(a) € —C', &@—w;(a;) takes negative values on —C’, and (wo(a), &) >
—1. Finally,

(b, @) = n; + (wo(a), ws(&)) =1+ (wo(a), ws(&)) <1 (4)

since wo(a) € —C' and w;(&) is a positive root. The relations (2), (3) and
(4) then imply that b € C, and hence that ; € I'c. It is clear that the map
i+ ; is injective, since v;(0) = w;. Finally, let v € I'c with v # 1, and put
v =tw witht € P and w € W. Then ¢ # 1 since ¢ N'W = {1}. On the other
hand, ¢(0) = y(0) € CNP(R") and Prop. 5 implies that there exists i € J
such that t(0) = @;. Then ~; *v(0) = 0, hence vy = ~; since [c NW = {1}.
This completes the proof.

COROLLARY. The (W;);c3 form a system of representatives in P(R") of the
non-zero elements of P(R”)/Q(R").



190 ROOT SYSTEMS Ch. VI

Indeed, if we identify I, with P(R")/Q(R"), the element ~y; is identified
with the class of @; mod. Q(R").

Remarks. 1) The map v +— 7(0) is a bijection from I'c to CNP(R").
2) The group G is also the normaliser of W, in the group of automor-
phisms of E provided only with its affine structure (cf. Exerc. 3).

4. APPLICATION: ORDER OF THE WEYL GROUP

Lemma 1. Let X be a locally compact space countable at infinity, G a group
acting continuously and properly on X, pu a measure on X invariant under
G, G’ a subgroup of G, U and U’ two open subsets of X with finite non-zero
measure. Assume that the sU for s € G (resp. the s'U’ for s € G') are
pairwise disjoint and that their union is of negligible complement. Then G’
is of finite indez in G and (G : G') = pu(U’)/u(U).

Let (sx)aca be a family of representatives of the right cosets of G’ in G.
Let U; be the union of the syU. Then the s'Uy, for s’ € G/, are pairwise dis-
joint and have union M = L€JG sU. Let M’ = :LGJG/ s'U’. The union of U’ (resp.

U;) and a suitable subset of X—M' (resp. X-M) is a fundamental domain,
evidently p-measurable, for G'. By Integration, Chap. VII, § 2, no. 10, Cor.
of Th. 4, u(U’) = u(U;). This proves that Card A = (G : G’) is finite, and
that u(U’) = (Card A)u(U).

PROPOSITION 7. Assume that R is irreducible. Let B = {a,...,q;} be a
basis of R, f the connection index of R (§ 1,n0.9) and @ = nja1+---+noy
the highest oot of R (for the order defined by B). Then the order of W is
equal to

(l!)n1n2 R nlf.

Let (wy, . . ., ;) be the basis of P(R”) dual to B. By the Cor. of Prop. 5, the
open simplex C with vertices 0,n] '@, .. ,nl_lwl is an alcove of E. Choose
a Haar measure p on the additive group V*. Let A be the set of elements of
V* of the form &1y + -+ 4+ oy, with 0 < §; < 1fori=1,...,I. By Cor. 2
of Prop. 15 of Integration, Chap. VII, § 1, no. 10,

/J,(A)//J,(C) = (l')anlz ey (5)

On the other hand, let A’ be the set of elements of V* of the form

o + -+ &ag,

with0 < & <1fori=1,...,1. Since (a7,...,q) is a basis of the Z-module
Q(R"), we can apply Lemma 1 with X = V* G =W,, G’ =Q, U= C and
U’ = A’. This gives

H(A)/1(C) = (Wq : Q) = Card W. (6)
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Finally, Lemma 1 can be applied again, taking X = V*, G =P, G' = Q,
U= A and U’ = A’. This gives

p(A)/u(A) = (P: Q) = (P(R) : QR)) = f. (7)

The proposition now follows by comparing formulas (5), (6) and (7).

5. ROOT SYSTEMS AND GROUPS GENERATED BY
REFLECTIONS

PROPOSITION 8. Let F be a real Hilbert space of finite dimension l. Let
%) be the set of affine hyperplanes of F and G the group generated by the
orthogonal reflections sy with respect to the hyperplanes H € $). Assume that
the conditions of Chap. V, § 3 are satisfied (i.e. that g(H) € ) for allH € §
and g € G, and that G acts properly on F). Assume also that 0 is a special
point for G and that the group T of translations belonging to G is of rank [.
Then there exists a unique reduced root system R in V = F* such that the
canonical isomorphism from F to V* transforms G to the affine Weyl group
W, of R.

We remark first of all that the assumption on T implies that G is essential:
otherwise, the affine space F would decompose into a product Fog x F, with
dim F; < [, the group G being identified with a group of displacements acting
properly on F; (Chap. V, § 3, no. 8, Prop. 6), and T would not be of rank I.

Let o be the set of H € $ such that 0 € H. For H € g, let $H be the
set of elements of §) parallel to H. Since 0 is a special point, § is the union
of the $Hy for H € Ho. Since T is of rank [, there exists a v € F such that
the translation by the vector v belongs to T and v ¢ H. The hyperplanes
H+ kv for k € Z are pairwise distinct and belong to $Hy. Now let a be a unit
vector of F orthogonal to H: then H+ (v|a)a € Hu and since § is locally finite
(Chap. V, § 1, no. 1, Lemma 1), there is a smallest real number A > 0 such
that H + la € $. We are going to show that Hy is the set of hyperplanes
H + k)Xa for k € Z. Indeed,

H =H+ X\a € Hy

and the element sp/ o sy of G is the translation by the vector 2Aa (Chap. V,
§ 2, no. 4, Prop. 5). Consequently, H + 2n\a = (sg'sg)™(H) and H + (2n +
Aa = (sgrsg)"(H') belongs to Hy. On the other hand, if L € $Hy, there
exists £ € R such that L = H 4 £)a and there exists an integer n such that

either 2n <& <2n+1, or 2n—1< & < 2n.
In the first case, (sgsp/)™(L) = H + (£ — 2n)\a with
0<(€—-2n)A <A

and the definition of A implies that £ = 2n + 1; in the second case,
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su(susw )" (L) =H+ (2n —&)Aa with 0< 2n—§A < A

and the definition of A implies that £ = 2n.
It follows that if ay is the linear form on F such that

H ={z € F|{om,z) = 1},

the set Hu is the set of hyperplanes Loy x = {z € F|{(an,z) = k} for k € Z,
and ay and —ay are the only linear forms with this property.

Consequently, the proposition will be proved if we show that the set R of
elements of V of the form tay is a reduced root system in V.

a) We prove condition (RSy): it is clear that R is finite (since $)¢ is fi-
nite) and does not contain 0. Moreover, R generates V. Indeed, if z € F is
orthogonal to R, then « € H for all H € $y and the translation by the vector
x commutes with every element of G. Since G is essential, this implies that
z=0.

b) We prove (RSy1). For v € V and r € R, put L, » = {z € F| (v,z) =1}
as above; if o € R, put Hy = L 0, and let s, be the transpose of sy, . There
exists a unique element o € F orthogonal to H, and such that (", a) = 2.
Then sy, = Sa~, and Sq = Sq,o-. For 8 € R,

Ls,(8),1 = su.(Lg,1) €9
and there exist v € R and n € N* such that L;_(g),1 = L,n. Then

s$H, (Ly,1) = Lg1/n

and so 1/n € Z. Thus n =1 and s,(8) = v € R. This proves (RSi).
¢) We prove (RSyp). Let @ € R and set H, = Ly 1. Then

H:x =H, + (1/2)0[;

since the translation t(a”) by the vector o™ is the product sy su, (Chap. V,
§ 2, no. 4, Prop. 5), it belongs to T and a” = t(a”)(0) is a special point for G.
Consequently, for all 3 € R, there exists a hyperplane Lg ; passing through
o, with k an integer, which shows that (8, a") € Z, and proves (RSmy).

d) Finally, it is clear that R is reduced, for if H,H' € £, H # H', the
linear forms ay and ay: are not proportional.

Remark. 1) The assumption that T is of rank [ is satisfied in particular when
G is irreducible and infinite. Indeed, the vector space generated by vectors
corresponding to the translations in T is invariant under the canonical image
of G in the linear group of F. It is different from {0} if G is infinite and is
thus equal to the whole of F if G is infinite and irreducible.

A finite group generated by reflections is not always the Weyl group of a
root system. More precisely:
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PROPOSITION 9. Let V be a real vector space of finite dimension I, and
let G be a finite subgroup of GL(V), generated by reflections and essential.
Give V a scalar product invariant under G. The following conditions are
equivalent:

(i) There exists a discrete subgroup of V of rank | that is stable under G.

(ii) There ezists a Q-structure on 'V (Algebra, Chap. I1, § 8, no. 1, Def. 1)
invariant under G.

(iii) There exists a oot system in V whose Weyl group is G.

(iv) There exists a discrete group G’ of displacements of V, acting properly
on 'V, and generated by reflections, such that G’ is the semi-direct product of
G and a group of translations of rank I.

(ii) = (i): let V/ C V be a Q-structure on V invariant under G. Let A
be a finite subset of V' generating the Q-vector space V’. Replacing A by

UG s(A), we can assume that A is stable under G. Let B be the subgroup of
sE

V generated by A. Then B is stable under G, of finite type and torsion-free,
so has a basis over Z which is both a basis of V/ over Q and a basis of V over
R.

(iif) = (ii): this follows from Prop. 1 of § 1, no. 1, for example.

(iv) = (iii): let G’ be a group satisfying condition (iv). The group of
translations of G’ is of rank [, and 0 is a special point for G’ by Prop. 9 of
Chap. V, § 3, no. 10. Prop. 6 shows that there exists a reduced root system
Ro in V* such that G’ is identified with W,(Rg); the group G is then the
Weyl group of the inverse root system of Rg.

(i) = (iv): assume that G leaves stable a discrete subgroup M of V, of
rank [. For any reflection s € G, s(z) —z € M for all z € M, so the line D;
orthogonal to H; meets M; let as, —as be the generators of the cyclic group
D; N M; the set A of the as and —as is stable under G, hence generates a
subgroup M’ of M stable under G; the discrete group M’ is of rank ! because
G is essential. Let G’ be the group of affine transformations of V that is the
semi-direct product of G and the group of translations whose vectors belong
to M'. Let G} be the subgroup of G’ generated by the reflections of G’. We
shall show that G} = G, which will complete the proof. First, G} 2 G since
G is generated by reflections. On the other hand, for any reflection s of G, let
ts be the translation with vector as. The transformation sot; is a reflection,
and sots, € G'; thus t; is a product of two reflections of G’; this being true
for every reflection s of G, the translations whose vector belongs to M’ are
all in Gj.

DEFINITION 2. A group G satisfying the equivalent conditions of Prop. 9 is
called a crystallographic group.

Remark. 2) Let G be a finite group generated by reflections and essential.
Then G is crystallographic if and only if every element of its Coxeter matrix is
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one of the integers 1,2, 3,4, 6. Indeed, this condition is necessary by Remark 3)
of § 1, no. 5. The fact that it is sufficient will follow from the classification
of finite Coxeter groups given in § 4 (for a direct proof, see Chap. V, § 4,
Exerc. 6).

§ 3. EXPONENTIAL INVARIANTS

In this section, the letter A denotes a commutative ring, with a unit element,
and not reduced to 0.

1. GROUP ALGEBRA OF A FREE ABELIAN GROUP

Let P be a free Z-module of finite rank I. We denote by A[P] the group
algebra of the additive group of P over A (Algebra, Chap. III, § 2, no. 6). For
any p € P, denote by e? the corresponding element of A[P]. Then (eP),ep is
a basis of the A-module A[P], and, for any p,p’ € P, we have

/ /
ePeP = ePtP | (P)l=eP, 0 =1.

Lemma 1. Assume that A is factorial (Commutative Algebra, Chap. VIL, § 3,
no. 1, Def. 1).

(i) The ring A[P] is factorial.

(ii) If u,v are non-proportional elements of P, the elements 1 —e¥,1 —¢e?
of A[P] are relatively prime.

Let (p1,p2,..-.,p1) be a basis of P, and X;,Xs,...,X; be indetermi-
nates. The A-linear map from A[Xy,...,X;, X7 %,...,X; "] to A[P] that takes
X X532 .. X" (where ny,ng,...,n; € Z) to e™Prt+MP jg an jsomorphism
of rings. Now A[Xy,...,X;] is a factorial ring (Commutative Algebra, Chap.
VII, § 3, no. 5), and A[Xy,...,X;,X;%,...,X;}] is the ring of fractions of
A[Xy,...,X], hence is also factorial.

Let P’ (resp. P”) be the set of elements of P of which some multiple
belongs to Zu + Zv (resp. Zu). Then the groups P/P’ and P’ /P” are torsion-
free, so there exists a complement of P” in P’ and a complement of P’ in P,
Consequently, there exists a basis (21, 23, .. .,2;) of the Z-module P and ra-
tional integers j, m,n such that u = jz1,v = m2; +nz2s,j5 > 0,n > 0. Putting
X; =e€% for 1 < i<, wethen have 1 —e* =1—-XJ,1 —¢¥ =1—-XPX3.
Let K be an algebraic closure of the field of fractions of A, so that A[P] can
be identified with a subring of the ring B = K[Xy,...,X;, X7}, ... ,X; 1. For
any jth root of unity z, 1 — 2X; is extremal in

K[Xi,...,Xi];

moreover, the ideal generated by 1 — 2X; contains no monomial in the X;.
We conclude that the ideal (1 — 2X;)B of B is a prime ideal of height 1
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(Commutative Algebra, Chap. VIL, § 1, no. 6), hence that 1—2X; is extremal
in B. The extremal factors of 1 — X] in B are thus of the form 1 — zX;. Now
none of these factors divide 1 — X7"X% in B (for the homomorphism f from
B to B such that f(X;) =271, f(X;) = X; for i > 2, satisfies

f(1—2X;)=0 and f(1-X7'X3)=1-2""X3#0).

Thus, 1 — X{ and 1 — XT*X7Z are relatively prime in B. Consequently, any
common divisor of 1 — X? and 1 — X7*X% in A[P] is invertible in B and so,
up to multiplication by an element of the form X’le’z62 ...Xf’, is equal to
an element a of A; in other words,a divides 1 in A, hence is invertible in A.
Thus, finally, 1 — X{ and 1 — XT"X2 are relatively prime in A[P].

2. CASE OF THE GROUP OF WEIGHTS; MAXIMAL TERMS

We retain the notations of the preceding number and let R be a reduced root
system in a real vector space V. In the remainder of this section, we take for
P the group of weights of R (§ 1, no. 9). The group W = W(R) acts on P,
hence also on the algebra A[P]; we have w(eP) = e*® for w € W and p € P.

Let C be a chamber of R (§ 1, no. 5) and let B = (a;)1<icy be the
corresponding basis of R. We provide V (and hence also P) with the order
structure defined by C. If p,p’ € P, p > p’ if and only if p — p’ is a linear
combination of the a; with positive coefficients.

DEFINITION 1. Let x = prpep be an element of A[P]. The setS of p e P
3

P
such that x, # 0 is called the support of x and the set X of mazimal elements
of S is called the mazimal support of x. A term xpeP with p € X is then called
a mazximal term of x.

Lemma 2. Let x € A[P] and let (zpeP)pex be the family of maximal terms of
z. Let ¢ € P and let y € A[P] be such that e? is the unique mazimal term of
y. Then, the family of mazimal terms of xy is (zpeP*9)pex.

Put = = Zp:xpe”,y = Zr:yre"and Ty = Zt:ztet. Thenr < g forallr € P
such that y, # 0 and 2; = p_‘; ,ZoYr-

Ift=p+q=p +r withp € X and zpy, # 0, then r < ¢, hence p’ > p
and consequently p’ = p. Thus 2p4+q = Zpyq = zp # 0. This shows that X +¢
is contained in the support of the product zy.

On the other hand, if t = p’ + r with 2y, # 0, there exists p € X such
that p’ < p and we have t < p + ¢q. The maximal support of zy is therefore
contained in X + ¢. Since no two elements of X + g are comparable, it follows
that X + ¢ is exactly the maximal support of zy and we have seen above that
2p+q = Tp for p € X, which completes the proof of the lemma.
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Remark. Since z # 0 means that the maximal support of z is non-empty,
Lemma 2 shows that z # 0 implies zy # 0 whenever y admits a unique
maximal term of the form ef.

3. ANTI-INVARIANT ELEMENTS

We retain the notations of the preceding number. Denote by £(w) the deter-
minant of the element w € W. Thus

e(w) = (1!,

the length {(w) being taken relative to the family of reflections s, .

DEFINITION 2. An element x € A[P] is said to be anti-invariant under W
if
w(z) = (-1)!® ¢

for allw e W.

The anti-invariant elements of A[P] form an A-submodule of A[P]. For
any = € A[P], put
o) = % e(w)w(a) 1)

weW
For z € A[P] and w € W, we have

w(J(x)) = U§V e(v).wu(z) = e(w) vgv e(v).v(z) = e(w).J(x)

and J(z) is anti-invariant. On the other hand, let ¢ = Card(W). For any
anti-invariant element = of A[P], we have J(z) = g.z. It follows that, if q is
invertible in A, the map ¢~1J is a projection from A[P] onto the submodule
of anti-invariant elements.

Let @y,...,w; be the fundamental weights corresponding to the cham-
ber C. The elements of P N C (resp. P N C) are the weights of the form
niwy + - - + mw; with n; > 0 (resp. n; > 0) for 1 < i <! (§ 1, no. 10). On
the other hand,

p=wW1+ -+
is half the sum of the positive roots (loc. cit.) so the elements of PNC are the
weights of the form p+p with p € PN C. Finally, if p € PNC, then w(p) < p

for all w # 1 (§1, no. 6, Cor. to Prop. 18) and e? is thus the unique maximal
term of J(eP).

PROPOSITION 1. If 2 is not a zero divisor in A, the elements J(eP) for
p € PNC form a basis of the module of anti-invariant elements of A[P].

The weights w(p) for w € W and p € PNC are pairwise distinct. It follows
that the J(eP) for p € PN C are linearly independent.
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On the other hand, let # = >_ z,eP be an anti-invariant element of A[P].
P

If po belongs to a wall, it is invariant under a reflection s € W and

T =2 xpeP = —s(z) = — D x,e’P.
P P

It follows that 2z,, = 0, so x,, = 0. Since every element that does not
belong to any wall can be written uniquely in the form w(p) with w € W and
p € PN C, we thus have

= 2 X xw(p)e“’(p). 2)

pePNC weW

Since w(z) = X 2,e¥®) = e(w) X xpe?, Ty(p) = (w)zp, and we deduce
P P
from (2) that
VDY zpJ(eP),

peEPNC

which completes the proof.

Consider now the element d of the algebra A[1P] defined by

d= a/2 _ —a/2 3
ag{{bo(e e” %) @)
=er. H (1-e

a€R,a>0
=e . I (e2-1).
a€R,a>0

Since p € P, d € A[P].

PROPOSITION 2. (i) The element d defined by (3) is an anti-invariant el-
ement of A[P]; its unique mazimal term (no. 2, Def. 1) is e and d = J(e”).

(ii) For any p € P, the element J(eP) is divisible uniquely by d and the
quotient J(eP)/d is an element of A[P] invariant under W.

(iii) If 2 is not a zero divisor in A, multiplication by d is a bijection from
the set of elements of A[P] invariant under W to the set of anti-invariant
elements of A[P].

We know that, for 1 <4 < [, the reflection s; = s,, leaves stable the set

of positive roots other than ¢; and that s;(a;) = —a; (§ 1, no. 6, Cor. 1 of
Prop. 17). Hence,

. — (p—@i/2 _ /2 . a/2 _ —a/2
Sz(d) (6 € ) aGR,aI;[O,a;éai(e € )
= —d = ¢€(s;).d.

Since the s; generate W, this proves the first assertion in (i). The second
assertion in (i) follows immediately from (3) and Lemma 2, noting that 1 is
the unique maximal term of 1 —e~® for € R, a > 0.
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Assume now that A = Z. By Prop. 1,

= P ith Z.
d pel;[nccpJ(e) with ¢, € (4)

On the other hand, it is clear that

d=ef + q;ﬁ el (5)
If p € PN C with p # p, then p > p and the coeflicient of e in d is zero by
(5). Thus, ¢, = 0. Moreover, comparison of the coefficients of e” in (4) and
(5) shows that c, = 1 and hence that d = J(e).

We continue to assume that A = Z. Let p € P, @ € R and M be a system of
representatives of the right cosets of W with respect to the subgroup {1, s,}.
Then,

J(eP) = 2 e(w)e¥® + X e(sqw)e=?®,
weM weM

Now s,w(p) = w(p) — (", w(p))a = w(p) + Ny, with n,, € Z. Thus,

J(eP) = 2 e(w)e?® (1 — enw),
weM

If ny = 0, it is clear that 1 — e™© is divisible by 1 — e® and this is also true
when n,, < 0 since 1 — e"+® = —e™*(1 — ¢~"™v*), Hence, J(eP) is divisible
by 1 —e“ in Z[P].

By Lemma 1, Z[P] is factorial and the elements 1 — e* for & € R and
a > 0 are mutually prime. It follows that J(eP) is divisible in Z[P] by the
product l;[o(l —e®), and hence also by d = e™" o‘1;10(1 —e%).

Returning to the general case, by extension of scalars from Z to A, we
deduce from the above that d = J(e?) and that every element J(e?) is divisible
by d. Since e” is the unique maximal term of d, the Remark of no. 2 shows
that there exists a unique element y € A[P] such that J(e?) = dy and it
follows immediately that y is invariant under W, and hence that d and J(e?)
are anti-invariant. This proves (i) and (ii).

Finally, if 2 is not a zero divisor in A, the Remark of no. 2 and Prop. 1
imply (iii).

Remarks. 1) If 2 is not a zero divisor in A, it is easy to check that d is the
unique anti-invariant element of A[P] with e” as its maximal term.

2) Lemma 2 of no. 2 shows that the unique maximal term of the quotient
J(eP)/d (for p e PN C) is eP~~.
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4. INVARIANT ELEMENTS

Let A[P]W be the subalgebra of A[P] consisting of the elements invariant
under W. For p € P, denote by W.p the orbit of p under W, and let S(eP) =

;v e? be the sum of the W-transforms of e€?; this is a W-invariant element.
gEW.p

Ifpe PNC, w(p) < pforallwe W (§ 1, no. 6, Prop. 18) and eP is the
unique maximal term of S(e?).
Let © = 2 wpe? € A[P]V; then &y (p) = , for all p € P and all w € W.
P

On the other hand, every orbit of W in P meets P N C in exactly one point
(§ 1, no. 5, Th. 2). Hence,

T = Z_ zpS(eP). (6)

PNC
We deduce:

Lemma 8. The S(eP) for p € PNC form a basis of the A-module A[P]W.
More generally:

PROPOSITION 3. For any p € PNC, let z, be an element of A[P|W with
unique mazimal term eP. Then the family (zp)pepnﬁ is a basis of the A-

module A[P]W.
We first prove a lemma.

Lemma 4. Let I be an ordered set satisfying the following condition:
(MIN) Every non-empty subset of I contains a minimal element.

Let E be an A-module, (e;);c1 a basis of E and (x;);c1 a family of elements
of E such that
T, = €; + Z aij€j,
<t

for all i € I (with a;; € A, the support of the family (a;) being finite for all
i). Then, (x;)ic1 s a basis of E.

For any subset J of I, let Ey be the submodule of E with basis (e;);cy.
Let G be the set of subsets J of I with the following properties:

(a) If ' <iand i € J, thend € J;

(b) (zs)ieys is a basis of Ej.

It is immediate that &, ordered by inclusion, is inductive and non-empty.
It therefore has a maximal element J. If J # I, let {9 be a minimal element of
I—J and put J' = JU{ip}. Every element ¢ € I such that 7 < iy then belongs
to J: it follows that J’ satisfies (a). On the other hand, J* also satisfies (b):
indeed,
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€y = Tjy — Z Qipj €5,
71<%0

from which (b) follows. Hence J' € &, a contradiction. Thus, J = I and the
lemma is proved.

We now prove Prop. 3. We apply Lemma 4 with I = PNC. Let ¢ € I, and
let I be the set of p € I such that p < g. If p € I;, the relations

g—-p=0, peC, geC

imply that
(g—plp) >0 and (¢—plg) >0,

and hence that
(plp) < (plg) < (gl9)-

The set I, is thus bounded. Since I is discrete, it follows that I, is finite, and it
is clear that I satisfies the condition (MIN). On the other hand, for all p € I,

Tp = €P + 2 cpge?
q<p
so by (6),
e p S q .
z, = S(e )+q<§161 cpgS(e?)

The proposition now follows from Lemmas 3 and 4.

THEOREM 1. Let @y, ...,w; be the fundamental weights corresponding to
the chamber C, and, for 1 <i <1, let z; be an element of A[P|W with ¥ as
its unique mazimal term. Let

o AXy,..., X)) — APV

be the homomorphism from the polynomial algebra A[X,...,X;] to A[P]W
that takes X; to x;. Then, the map ¢ is an isomorphism.

Lemma 2 implies that the image under ¢ of the monomial X7 ... X" is
an element with unique maximal term e™®1++m®i Gince every element of
P N C can be written uniquely in the form nyw; + - - - + mw;, Prop. 3 shows
that the images under ¢ of the monomials X7* ... X" are a basis of A[P|W,
hence the theorem.

Ezamples. 1) We can take z; = S(e?).
2) By Remark 2 of no. 3, we can take x; = J(e?*¥¢)/d (with the notation
in no. 3).



§ 4. CLASSIFICATION OF ROOT SYSTEMS 201
§ 4. CLASSIFICATION OF ROOT SYSTEMS

1. FINITE COXETER GROUPS

In this section, we are going to determine, up to isomorphism, all root sys-
tems, and consequently all crystallographic groups (§ 2, no. 5). More gener-
ally, we shall start by determining all finite groups generated by reflections in
a finite-dimensional real vector space: this is equivalent (Chap. V, § 4, no. 8)
to determining all finite Coxeter groups, or (Chap. V, § 4, no. 8, Th. 2)
to determining all Coxeter matrices of finite order such that the associated
bilinear form is positive and non-degenerate.
Let M = (my;)i,je1 be a Coxeter matrix of finite order [. Put

gij = — cos(m/mij;).

Recall that ¢; = 1 and that ¢;; = gj; is zero or < —1/2 for ¢ # j. Put
E = R' and let (e;)ier be the canonical basis of E. Denote by (z|y) the
bilinear form on E associated to M (Chap. V, § 4, no. 1) and ¢ the quadratic
form z — (z|z) on E. For z = %{ixi,

1

2_ — L
Iz [I*= q(z) = m_zelqu&ﬁa-

Denote by (X, f) the Cozeter graph of M (Chap. IV, § 1, no. 9). If @ is an
edge of X, f(a) is called the order of a.

In the remainder of this number, the Coxeter group W(M) defined by
M (Chap. V, § 4, no. 3) is assumed to be finite, so that ¢ is positive and
non-degenerate and X is a forest (Chap. V, § 4, no. 8, Prop. 8). We also
assume that X is connected (in other words that the Coxeter group W(M) is
irreducible), so that X is a tree.

From the condition that ¢ is positive and non-degenerate, we shall obtain
conditions on the m;; that will enable us to list all the possibilities for the
corresponding Coxeter graphs; it will only remain to show that these possi-
bilities are actually realised, in other words that the corresponding groups
W(M) are finite.

Lemma 1. For all i, ; g <1
j#i

Let J be the set of j € I such that ¢;; # 0, in other words such that
{i,7} is an edge of X. If 5,5’ € J and j # 5, {4,'} is not an edge (otherwise
i,4,j" would form a circuit), so (ejlej) = 0. Let F = _ZJRej. Then (e;);es

j€
is an orthonormal basis of F. The distance d from e; to F is given by d? =

J%(&,'Qg) ]% a;; jZ#q,, ence the lemma

Lemma 2. Any vertex of X belongs to at most 3 edges.
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Indeed, if ¢ is linked to h other vertices, the relations qizj > ‘—11 for these
other vertices implies that % <1 by Lemma 1, so h < 3.

Lemma 8. If i belongs to 8 edges, these edges are of order 3.

If not, we would have, in view of the relation cos § = %,

1 1 V2
7 S Y2
L% 2 gt (g) =1

which is impossible (Lemma 1).

Lemma 4. If there exists an edge of order > 6, then | = 2.

Indeed, let {¢,;j} be such an edge. If | > 2, one of the edges ¢,;j (say 1)
would be linked to a third vertex j’, since X is connected. In view of the

relation cos § = ‘/75 we would have

1
2 > 4 (X2 o
&> gt (=1

which is impossible (Lemma 1).

Lemma 5. A vertex cannot belong to two distinct edges of order > 4.
Let ¢ be such a vertex. We would have ; @ > (% )2+ ( \/TE )2 = 1, which
JF

is impossible (Lemma 1).

Let {4,5} be an edge of X. We are going to define a new Coxeter graph,
which will be obtained from the graph of M by identifying i and j. The set I’ of
its vertices is the quotient of I obtained by identifying 7 and j. Put p = {3, j},
which is an element of I’, and identify the elements of I distinct from 4 and
j with their canonical images in I'. Let k, k' be two distinct elements of I'.
Then, {k, k'} is an edge of the new graph in the following cases:

1) k and k' are distinct from p and {k, k’} is an edge of X; in this case,
the order of this edge is defined to be myy;

2) k = p, and one of the sets {i,k'}, {4, k'} is an edge of X; the order of
{p, k'} is defined to be my if {i,k'} is an edge of X, and m;x if {j,k'} is an
edge of X (these two possibilities are mutually exclusive because X is a tree).

Let M' = (m};)i jer be the new Coxeter matrix thus defined, and put

q;; = —cos ;:’,—J Then, for k # p, q,), = qik + gjx- Thus, if (§;) € R,

k,g;ﬂ, ok € = k,kz'el Qe €l + E5—E€7 — &7 — 2q556:; (1)
— g2
= k;;el%k’fkfk’ — (14 2¢;5)&;.

Lemma 6. If {i,j} is of order 8, W(M') is a finite Cozeter group.
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Indeed, ¢;; = —3, so (1) becomes

> g =2
k, k"€l Tet S k,k'€l Qe S

and (€k)ger — . kZI Q1 Ex€r is a positive non-degenerate quadratic form.
, /e ’

It now suffices to apply Th. 2 of Chap. V, § 4, no. 8.

Lemma 7. We have one of the following:

a) X has a unique ramification point (Chap. IV, Appendix, no. 1), and
all the edges of X are of order 3.

b) X is a chain and has at most one edge of order > 4.

We argue by induction on (.

a) Assume that X has a ramification point ¢. Then 7 belongs to 3 edges of
order 3, {1, k1}, {3, k2}, {7, ks} (Lemmas 2 and 3). If | = 4 the lemma is proved.
If not, then k;, say, belongs to an edge distinct from those just mentioned
since X is connected. Identify 7 and k; in the Coxeter graph of M. This gives
a new graph to which the induction hypothesis can be applied, in view of
Lemma 6. Now the image p of i is a ramification point of the new graph
X’. Thus X’ has no other ramification point and all its edges are of order
3. Thus all the edges of X are of order 3, and ¢ and k; are its only possible
ramification points. But if k; were a ramification point of X, p would belong
to at least 4 edges in X’, contrary to Lemma, 2.

b) Assume that X has no ramification point. Then X is a chain (Chap.
IV, Appendix, no. 3, Prop. 3). Let {i,5} be an edge of order > 4. If | = 2,
the lemma is trivial. If not, then 4, say, belongs to an edge {7, k} with k # j
(since X is connected). This edge is of order 3 (Lemma 5). Identify ¢ and k
in the Coxeter graph of M. By Lemma 6, the induction hypothesis can be
applied. Let p be the image of ¢ in the new graph X'. In X/, {p, j} is an edge
of order > 4, so X’ has no other edge of order > 4, and hence {i,j} is the
only edge of order > 4 in X.

Lemma 8. Let iy,i2,...,i, be vertices of X such that {i1,iz}, {i2,i3},...
P
.., {tp—1,1p} are edges of order 3. Then g( 21 re;,) = ip(p + 1).
r=
We have (e;,e;,) = 1, (e, |ei,,,) = —3, (ei lei,) = 0if s > 7 + 1. Thus
p y4 p—l 1 p—l
gq(Xre)=2r2—22 Zr(r+1)=p*— > r
r=1 r=1 r=1 2 re1

By Theory of Sets, Chap. III, § 5, no. 8, Cor. to Prop. 14, this is equal to

1 1
2 —_— —_ = —
p 2p(p 1) 210(;0+ 1).
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Lemma 9. Assume that X is a chain with vertices 1,2,...,1 and edges
{1,2},{2,3},...,{l - 1,1}.

(i) If one of the edges {2,3},{3,4},...,{l — 2,1 — 1} is of order > 4, this
edge is of order 4 and the graph is the following:

4
(ii) If the edge {1,2} is of order 5, the graph is one of the following:

5 5 5

We can assume that [ > 2 (Lemma 4). Assume that {é,7 + 1} is of order
>4, with1<i<l—1. Put

rz=-e1+2e+ - +ie, y=e; +2e_1+ -+ (I —i)e41, and j=1—1.

By Lemma 8, || z ||>= Li(i +1),|| ¥ ||>= 3j(j + 1). On the other hand,
(z]y) = ij(eilei41) = —ij cos I with m = 4 or 5 (Lemma 4). Now

(@ly)? <l = |7y 1I?,

which gives

1
713+ 1) +1) > i%? cos” s

3

» (i+1)G +1) >4ij0082% > 2ij.
This gives, first of all, ij — ¢ —j—1<0,0r (1 —1)(j —1) < 2. If
1<i<i-1,
thenl1<j<l—1,s04=j=2 and so!
o T

T e
9 > 16cos? —, thus cos® — < cos? =
m 5

and hence m = 4. This proves (i). If i = 1 and m = 5, then 25 +2 > 4j3+—8‘/3,
orj@ <2,5<vV5+1<4,and sol=j+ 1< 4. This proves (ii).

! The 5th roots of 1 distinct from 1 are the solutions of 2* + 2% + 22 + 2 +1 =
0. Putting ¢ = 3(z + 1), this equation becomes (22)> =2+ 22+ 1 = 0, or
42> + 22 —1=0,s0 ¢ = %‘/g. Hence,

o T 2r  VB—1 2 3446

2cos g—1=cos?= s E =g

-
15

>§>i Ccos — =
8 ’ -
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Lemma 10. If X has a ramification point i, the full subgraph X-{i} is the
union of three chains, and if p—1, g—1, r—1 are the lengths of these chains,
the triple {p,q,r} is equal, up to a permutation, to one of the triples {1,2,2},
{1,2,3}, {1,2,4}, {1,1,m} (for somem >1).

The vertex ¢ belongs to 3 edges (Lemma, 2), and there is no other ramifica-
tion point (Lemma 7), so the full subgraph X - {i} is the sum of 3 chains X,
X3, X3 each of which has a terminal vertex linked to ¢ in X. Let {i1,42},
{i27i3}a cey {ip—liip} be the edges of Xla {jl)j2}a {j27j3}7 teey {jq—l:jq}
those of X5, and {kl,kz}, {kz,k‘g}, RN {k'r—l,kr} those of X3, with 41, ji,
k1 linked to ¢ in X. We can assume that p > q > r > 1. Put

z=e;,+2e,  +: - +pe;
y =ej, +2e5,_, + - +qej
z=ey, +2ek._, +--+reg,.

Since all the edges of X are of order 3 (Lemma 7), Lemma 8 gives || z ||>=
Ipp+1), |y II>= La(g+ 1), || z ||>= ir(r + 1). On the other hand, e; is
orthogonal to ezz,e%, .y€i,, 50 (e5|r) = p(eiles,) = 2p, similarly (e;|y) =
—1q, (&z) = —3r. The unit vectors lzlltz, |y ll7ty || 2|7 2 are
mutually orthogonal and e; does not belong to the subspace F that they
generate; the square of the distance from e; to F is

1 (el - (el — (el
1p 1 1o

C2p+1 2¢g+1 2r+1

-t 11 LI !

1 1
2t op+y1 2 2g+1 2 arn

I ol

Since this quantity is > 0, we have
P+ P+ (@+ DT+ (r+ 1) > L (4)
Hence 3(r + 1)~ > 1, so 7 < 2 and finally » = 1. Then (4) gives
1
P+ g+ )T > 5 (5)

hence 2(q +1)~! > 1, so ¢ < 2. Finally, if ¢ = 2, (5) gives

(p+1)7t , hence p<4.

\%
| =

THEOREM 1. The graph of any irreducible finite Cozeter system (W,S) is
isomorphic to one of the following:
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Al o0—o0—0 im0 (I = 1 vertices)
B; NP, SN (¢ = 2 vertices)
D; c,_c._(,_._o——--o<o (I = 4 vertices)
Eg o °

Eq o °

Eg o— —°

Fa4 o——oi-o—o

Gy o9,
Hy o920 o
H4 oio—o—o

Io(p) oLo(p=50rp>7).

No two of these graphs are isomorphic.

Indeed, let W = (m;;) be the Coxeter matrix of (W,S), and let | =
Card(S). If one of the m;; is > 6, then | = 2 (Lemma 4) and the Coxeter
graph of (W, S) is of type Ga or Io(p) with p > 7. Assume now that all the
msj < 5.

a) If the m;; are not all equal to 3, the graph X of (W, S) is a chain and
exactly one of the m;; is equal to 4 or 5 (Lemma 7). If one of the my; is equal
to 5, Lemma 9 shows that we have one of the types Hg, Hy or Iz(5). If one
of the m;; is equal to 4, Lemma 9 shows that we have one of the types B; or
F4.

b) Assume now that all the m;; are equal to 3. If X is a chain, the Coxeter
graph is of type A;. If not, Lemma 10 shows that it is of type Eg, E;, Eg or
D;.

The fact that no two of the Coxeter graphs listed are isomorphic is clear.

Conversely:

THEOREM 2. The Cozeter groups defined by the Coxeter graphs Ay, By, ...,
I2(p) of Th. 1 are finite.

This is clear for Iz(p), the corresponding group being the dihedral group
of order 2p (Chap. IV, § 1, no. 9). For Hy the corresponding quadratic form
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is
™
E+E+E+E — 68 — & —2(cos —)6354
1 + V5

=8+G+E+86 -4b — &b —

T

&34

7—3
&s)? Z(‘fl - 553)2 24\/_ &3.

=(&—

Since 7 — 3v/5 is > 0, this form is positive non-degenerate, and the corre-
sponding Coxeter group is finite. The same holds for that corresponding to
Hj, since it is isomorphic to a subgroup of the preceding (Chap. IV, § 1,
no. 8).

For the types A;, By,..., G2, we shall construct, in Nos. 5 to 13, root
systems having the corresponding groups as Weyl groups. We shall see that
these groups are not only finite, but crystallographic (§ 2, no. 5).

2. DYNKIN GRAPHS

By abuse of language, we shall call a normed graph a pair (I, f) having the
following properties:

1) I' is a graph (called the underlying graph of (I, f)).

2) If E denotes the set of pairs (4, j) such that {7, 5} is an edge of I', f is
a map from E to R such that f(3,7)f(j,7) =1 for all (3,5) € E.

There is an obvious notion of isomorphism of normed graphs.

Let R be a reduced root system in a real vector space V. We are going
to associate to it a normed graph (X, f), called the Dynkin graph of R. The
vertices of X will be the elements of the set I of orbits of W(R) in the union
of the sets {B} x B (where B is the set of bases of R). If N = (n;;); jer (resp.
M = (mi;)s,je1) is the canonical Cartan matrix (resp. the Coxeter matrix) of
R (§ 1, no. 5, Remark 7), two vertices ¢ and j of X are linked if and only if

n;; # 0 and we then put
i

f(i,5) =

Since n;; = 0 implies n;; = 0, this defines a normed graph (X, f).

Let (z|y) be a scalar product on V, invariant under W(R), and let
B = (o)1 be a basis of R, indexed canonically. Formulas (7) and (9) of
§ 1, no. 1 show that vertices ¢ and j of the graph X are linked if and only if

(aslaj) #0

nﬁ

and that
6,9) = k).

(aj]a;)
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In view of the results of § 1, Nos. 3 and 5, the only possibilities are the
following, up to interchanging i and j:

1) ¢ and j are not linked; n;; = nj; = 0; m;; = 2;
2) f(3,5) = £(4,%) = 1; nyj = ngi = =15 my; = 3;
4) f(1,5) =3, f(4,%) =1/3; ny; = =3, nji = —1; my; = 6.

We see from this that the Dynkin graph R determines the Cartan matrix
and the Coxeter matrix of R, and hence determines R up to isomorphism.
More precisely, the Cor. of Prop. 15 of § 1, no. 5 implies the following result:

PROPOSITION 1. Let Ry and Ry be two reduced root systems in vector
spaces Vi and Va. Let By = (a;)ic1; and By = (a;)ic1, be bases of Ry and
Ry, indexed canonically. Let A be an isomorphism from the Dynkin graph of
Ri1 to the Dynkin graph of Ry. Then, there exists a unique isomorphism from
Vi to Va transforming Ry into Ry and a; into ay) for alli € 1;.

It is clear that an automorphism of R defines an automorphism of the
Dynkin graph of R, and hence a homomorphism ¢ from the group A(R) to
the group of automorphisms of the Dynkin graph of R.

COROLLARY. The homomorphism ¢ defines by passage to the quotient an
isomorphism from the group A(R)/W(R) to the group of automorphisms of
the Dynkin graph of R.

Clearly, ¢(g) = Id for all g € W(R). On the other hand, Prop. 1 shows
that there exists an isomorphism v from the group of isomorphisms of the
Dynkin graph of R to the subgroup E of elements of A(R) leaving fixed a
given basis B of R, such that ot = Id. Since A(R) is the semi-direct product
of E and W(R) (§ 1, no. 5, Prop. 16), the corollary follows.

In practice, the Dynkin graph (X, f) is represented by a diagram composed
of nodes and bonds in the following way. The nodes correspond to the vertices
of X; two nodes corresponding to two distinct vertices ¢ and j are joined by
0, 1, 2 or 3 bonds in cases 1), 2), 3) and 4) above (up to interchanging i and
7). Moreover, in cases 3) and 4), that is when f(7,j) > 1, or when the roots
a; and a; are not orthogonal and not of the same length, an inequality sign
> is placed on the double or triple bond joining the nodes corresponding to
i and j oriented towards the node corresponding to j (that is, the shortest
root):

== (for f(i,5) = 2), = (for f(i,5) =3)
It is clear that the Dynkin graph (X, f) can be recovered from this diagram.

We remark that the diagram associated to the Coxeter graph of W(R) can
be obtained from that associated to the Dynkin graph of R by keeping the
nodes and the single bonds and replacing the double (resp. triple) bonds by
a bond surmounted by the number 4 (resp. 6). Conversely, given the Coxeter
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graph of W(R), the diagram associated to the Dynkin graph of R can be
recovered using the inverse of this procedure, except for the inequality signs
on the double or triple bonds. Th. 1 thus gives immediately the list of possible
Dynkin graphs. More precisely:

THEOREM 3. If R is an irreducible reduced root system, its Dynkin graph is
isomorphic to one of the graphs represented by the following diagrams:

A} o0—o—o0— —o— (I = 1 vertices)

B, o—o 0— + + + —O———0==x=D (l > 2 vertices)

C o—o—o—  — P S—— (! = 3 vertices)
o

D oo oo > 4 verdices)

Eg¢ o- o o

E7 O I o——0

Es o o ) O——0

F4 o———r=—0—0

G2 Oo===—0

No two of these graphs are isomorphic and there are irreducible reduced root
systems having each of them as their Dynkin graph (up to isomorphism,).

The first assertion follows immediately from Th. 1, in view of the preced-
ing remarks, the fact that the Coxeter groups of the graphs Hs, Hy and Iz (p)
(for p = 5 and p > 7) are not crystallographic, and the fact that the two
possible inequalities for the double (resp. triple) bond of the Dynkin graph
associated to the Coxeter graph F4 (resp. Gz) give isomorphic Dynkin graphs.
The second assertion is clear and the third will follow from the explicit con-
struction of an irreducible reduced root system for each type, a construction
that will be carried out in Nos. 5 to 13.

Remarks. 1) The graph A; reduces to a single node; we denote it also by
B; or C;. The graph By o=== is also denoted by C,. The graph Aj
o is also denoted by D3. Finally, Do denotes the graph consisting
of two unconnected nodes. (These conventions are derived from the properties
of the corresponding root systems, cf. nos. 5 to 8.)

2) If (X, f) is the Dynkin graph of a reduced root system R, the Dynkin
graph of the inverse system can be identified with (X, f~1). In other words,
the diagram associated to the Dynkin graph of R” can be obtained from that
associated to the Dynkin graph of R by reversing the inequality signs. If R
is irreducible, we see that R is isomorphic to R™ unless R is of type B; or C;,
in which case R is of type C; or B;.

o}
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3. AFFINE WEYL GROUP AND COMPLETED DYNKIN
GRAPH

Let R be an irreducible reduced root system and let (X, f) be its Dynkin
graph. We are going to define another normed graph (X, f) that we shall call
the completed Dynkin graph of R. The set I of vertices of X consists of the set
I of vertices of X and a vertex denoted by 0, not belonging to I. To define f ,
choose a basis B = (a;)ie1 of R and a scalar product (z|y) invariant under
W(R). Let g be the negative of the highest root for the order defined by B.
Two distinct vertices 4, j € I are linked if and only if (o;|a;) # 0 and we then
put

3. . (avilvi)

f3) (ajley)
It is immediate that the graph X and the map f thus defined do not depend
on the choice of B or the scalar product.

If the rank [ of R is equal to 1, then I = {i{} and oy = —a3; hence
f(0,i) = 1. If I > 2, ap is not proportional to any of the a; and (aolay) is
< 0 (§ 1, no. 8, Prop. 25). For any pair (4,5) of distinct elements of I, the
only possibilities are those denoted by 1), 2), 3), 4) in the preceding number
(putting, for example, ng; = n(ag, a;) and mo; = order of sS4, for all i € I).

In the case ! > 2, the completed Dynkin graph is represented by a diagram
with the same conventions as in the preceding number, sometimes indicating
by dotted lines the bonds joining the vertex 0 to the other vertices. We
remark that the inequality sign > on such a bond, if it exists, is always
directed towards the vertex distinct from 0, since ap is a longest root (§ 1,
no. 8, Prop. 25). The graph (X, f) is the subgraph obtained from (X, f) by
deleting the vertex 0. o

The action of A(R) on (X, f) extends to an action on (X, f), leaving 0
fixed, and W(R) acts trivially on (X, f).

We retain the notations of § 2. Prop. 5 of § 2, no. 2, together with Th.
1 of Chap. V, § 3, no. 2, shows that the Coxeter graph X' of the affine Weyl
group W, (R) can be obtained from (X, f) by the same rules by which the
Coxeter graph of W(R) is obtained from (X, f). On the other hand, let G
be the normaliser of W,(R) (§ 2, no. 3). To any g € G corresponds an
automorphism ¢(g) of X' and ¢(g) = Id if g € W, (R). Conversely, given an
automorphism A of X' there is, by Prop. 11 of Chap. V, § 4, no. 9, a unique
element g = () preserving a given alcove C and such that ¢(g) = A. Since
G is the semi-direct product of the subgroup G¢ of elements preserving C
and W, (R) (§ 2, no. 3), we deduce that ¢ defines by passage to the quotient
an isomorphism from G/W, (or from Gg) to Aut(X). It is immediate that
the composite of this isomorphism with the canonical map from A(R)/W(R)
to G/W, coincides with the homomorphism from A(R)/W(R) to Aut(X)
induced by the homomorphism from A(R)/W(R) to Aut(X, f) defined above.
By § 2, no. 3, the group Aut(X) is isomorphic to the semi-direct product of
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AR)/W(R) by P(R)/Q(R"), and P(R")/Q(R") is isomorphic to the group
I'c = Gc N W, (with the notation of § 2, no. 3); the element of Aut(X)
corresponding to the element v; of I'c transforms the vertex 0 to the vertex
i of X.

Remark. It can be shown that the canonical map
Aut(X, f) — Aut(2)
is an isomorphism.
THEOREM 4. Let (W, S) be an irreducible Coxeter system with S finite. The

associated quadratic form (Chap. V, §-4, no. 1) is positive and degenerate if
and only if the Coxzeter graph of (W, 8S) is isomorphic to one of the following:

Al O&O
- O——O
A (122 o/"\ /\o (circuit with | + 1 vertices)
ﬁz o 4 o 4 0
B, (I >3) >o—-——o— ot (I + 1 vertices)
G (23 otoo o oty (141 vertices)
D, (=4 >o—- . '—0< (I + 1 vertices)
Es o O o
£ . —o

o
Eg o o
Fy 0 . S
Ge o—ob

No two of these Cozeter graphs are isomorphic.

By Chap. V, § 4, no. 9 and Prop. 8 of § 2, no. 5, the Coxeter systems
whose quadratic form is positive and degenerate are those which correspond
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to the affine Weyl groups of irreducible reduced root systems. The theorem
therefore follows from the determination of the completed Dynkin graphs
made in nos. 5 to 13 below.

4. PRELIMINARIES TO THE CONSTRUCTION OF ROOT
SYSTEMS

Let V be a real vector space of dimension [ > 1 equipped with a scalar
product (z|y), L a discrete subgroup of V, A a finite set of numbers > 0, and
R the set of a € L such that (a|a) € A. Assume that R generates V and that,
for any pair (o, 8) of points of R, the number 2% is an integer. Then, R is
a root system in V. Indeed, R clearly satisfies (RS;). Let a € R; let s, be the
orthogonal reflection z — 2 — 28"2))01; then, if 3 € R, we have 2% €Z,
50 $4(8) € L, and moreover || so.(8) ||=|| B ||, so sa(8) € R; thus, R satisfies
(RSy1) and (RSqn), and is reduced if A does not contain two numbers of the
form A and 4.

Now let V be a subspace of E = R". Let (e1,. . .,&n) be the canonical basis
of E; we equip E with the scalar product for which this basis is orthonormal
and identify E* with E (resp. V* with V) by means of this scalar product.
We define subgroups Lo, L1, Lo, L3 of E as follows:

1) Lo is the Z-module with basis (g;). We have (a|3) € Z for all o, 8 € L.
The vectors a € Ly for which (aa) = 1 are the *¢; (1 < ¢ < n); those for
which (a|a) = 2 are the +e; + ¢; for ¢ < j (the two signs +, in +e; + ¢,
are chosen independently of each other; we adopt an analogous convention
throughout the remainder of this section).

2) L; is the Z-submodule of Ly consisting of the z = ;ﬁiei € Lo such

n
that Z & is even; since &; and £2 have the same parity, this is equivalent

to requmng that (z|z) is even. Let L’ be the submodule of L; generated

by the €; + ¢;; we have Z &ie; = (Z &)en (mod. L)), and since 2e, =

(€1 +en) — (61 —€n) € L 1t follows that L} = L;. Since Ly is generated by
L; and €1, Lo/L; is 1somorphlc to Z/2Z.

3) Lo =Lo+ Z( 21 €;). It is clear that an element x = Z &g, of Visin
Lo if and only if

26, €Z, & —¢ €Z foralliandj. (6)

n n
Since (ex|3 i_lesi) = 1 for all k, and since || %Z:l g; |>= 2, we have (a|B) €

%Z for a, 8 € Ly if n is even. The group Ly /Ly is isomorphic to Z/2Z.
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n n
4) Lz =L; + Z(% i; €;). If n is a multiple of 4, L3 is the set of z; &iEq

n
satisfying (6) and the condition Zlgi € 2Z; in this case, (a|B) € Z for all
1=
a, B € Ls.
It is immediate that the subgroup of E associated to Lo (resp. L1, L2) is
Lo (resp. Ly, L1). The subgroup of E associated to Lg is the set of

n
T = 'Z:l&gi € Ly
=

n n
such that (a:|% Zlei) € Z, that is, such that '21& € 2Z; if n = 0 (mod. 4),
1= 1=

this associated subgroup is therefore L.
The abelian group Ly /L; is of order 4, and hence is isomorphic to Z/4Z
or Z/2Z x Z/2Z (Algebra, Chap. VI, § 4, no. 6, Th. 3). If n is odd,

1 n
p(§ 2:16,) €L; & p=0 (mod. 4)
1=
so Ly /Ly is cyclic of order 4. If n is even,

1 n
p(§ ;61) €L; & p=0 (mod. 2)

so Ly /Ly, which contains two distinct elements of order 2, is isomorphic to
Z/27 x Z/2Z.

We shall use this notation throughout the next nine nos. and in the plates.
For each type of Dynkin graph in Th. 3, we shall describe explicitly:

(I) A root system R and the number of roots.

(IT) A basis B of R, and the corresponding positive roots. The basis B
will be indexed by the integers 1,...,1.

(IIT) The Coxeter number h (§ 1, no. 11).

(IV) The highest root & (for the order defined by B) and the completed
Dynkin graph (no. 3). We shall indicate next to each vertex the corresponding
root of B.

(V) The inverse system R, the canonical bilinear form and the constant
7R) (§ 1, no. 12).

(VI) The fundamental weights relative to B (§ 1, no. 10).

(VII) The sum of the positive roots.

(VII) The groups P(R), Q(R), P(R)/Q(R) and the connection index (§ 1,
no. 9).

(IX) The exponents of W(R) (Chap. V, § 6, no. 2, Def. 2). In the cases
A;,B;, C; and D; we determine the symmetric invariants.

(X) The order of W(R) (and in some cases its structure).
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(XI) The group A(R)/W(R), its action on the Dynkin graph, and the
element wy of W(R) that transforms B to —B.

(XII) The action of P(R")/Q(R") on the completed Dynkin graph and the
action of A(R)/W(R) on P(R")/Q(R").

For each Dynkin graph in Th. 3, these data will be collected in Plates I
to IX, and ordered in a uniform way as above. We also give:

(XIII) The Cartan matrix, from which the Dynkin graph is derived as
described in no. 2.

5. SYSTEMS OF TYPE B, (I > 2)

(I) We consider the group Lo in V = R (no. 4). Let R be the set of
o € Ly such that (a|a) =1 or (a|a) = 2, in other words the set of vectors
+e; (1 <i<l)and +e;+¢; (1 <i<j<U). It is clear that R generates V
and that 2(¢|B)/(a|a) € Z for all o, 5 € R. Thus R is a reduced root system
in V (no. 4). The number of roots is n = 21 4+ 411 = 972,

(I) Put

Q)] = €1 — €2, g = €2 —€3,...,Q_1 =€|—-1 — €&, O] = €].
Then

gi=aitai+-+o (1<i<l)
gitej=(+ami+-F+a)+(+ajp+-4+a) (1<i<ji<l)
gi—gj=0i+op1+--+amr (1<i<ji<l).

Thus (a1, a2, ...,o) isabasis of R (§ 1, no. 7, Cor. 3 of Prop. 20). Moreover,
| i l|?P=2fori<i, || oy ||?>=1, (a]aspr) = =1 for 1 <i<l—1, (aslay) =0
for 7 > i 4+ 1; the Dynkin graph of R is thus of type B;, which shows that R
is irreducible. The positive roots are the €; and the &; + €; (i < j).

(III) By Th. 1 (ii) of Chap. V, § 6, no. 2,

h=n/l =2l

(IV) Let @ = €1 + €2 = a1 + 205 + 2a3 + - - - + 2y, which is a root. The
sum of its coordinates relative to the basis (¢;) is 20 — 1 = h — 1. In view of
Prop. 31 of § 1, no. 11, & is the highest root of R. We have (&|a;) = 0 for
i # 2 and (&|az) = 1. Since s is of length 1 (resp. v/2) when [ = 2 (resp.
l > 3), the completed Dynkin graph of R is as follows:

for 1=2 == Ta

%

for 1 >3 ‘e g
Gz C3 a‘_l a‘
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(V) The formula o™ = (a2|o; y gives for R™ the set of vectors +2¢; (1 < @ < 1),
+e; +¢; (1 <4< j<!l). The Dynkin graph of R™ is obtained from that of R
by the procedure explained in no. 2, and we see that R” is of type C;.

There are 4] — 2 roots not orthogonal to 8 = €1, namely +¢; and +e; t%;
for 2 < j < I; for each such root a, n(a,8) = £2. Formula (17) of § 1,
no. 12 shows that, for ®r, the square of the length of 3 is (4! — 2)~!; hence
Sr(z,y) = (z|y)/(4l — 2). Apply formula (18) of § 1, no. 12 withz =y = 8.
This gives . .
and so y(R) = (1 +1)(4l — 2).

(VI) The fundamental weights w; (1 < ¢ < !) such that (w;|a;) = d;; are
easily calculated, and we find that

w;=¢€+te+--+¢
=a1—|—2a2+~-+(i—1)a,~_1+i(a1+ai+1+'-~+al) (’L<l)

1 1
w,:§(sl+52+---+e,):§(a1+2a2+~-+lal).

(VII) The sum of the positive roots is

2p0=2l—1)e1 + (21 —3)ea + - -+ 311 + &
=2 - Doy +2(2l — g +--- +i(2l — i)y + - - - + Py

(VIII) We have Q(R) = Ly (no. 4), and P(R) is generated by Q(R) and
wy, hence is equal to Ly (no. 4). Hence, P(R)/Q(R) is isomorphic to Z/2Z,
and the connection index is equal to 2.

(IX) and (X) In R}, the orthogonal reflection s., . ; (i # j) interchanges
€; and €; and leaves g invariant when the index k is distinct from ¢ and
J. The se, ., generate a group G; isomorphic to the symmetric group G;.
The orthogonal reflection s,, transforms ¢; to —e; and leaves invariant the e,
when the index k is distinct from i. The s, generate a group Go isomorphic
to (Z/2Z)'. The Weyl group W(R) is generated by G; and G, and G is
normal in W(R), so W(R) is isomorphic to the semi-direct product of &; by
(Z/2Z)". Tts order is therefore 2'.1!.

The symmetric algebra S(R') can be identified canonically with the alge-
bra of polynomial functions P(§y,...,&) on R'. For such a polynomial to be
invariant under W(R), it is first of all necessary that

P(&1,82,...,&) = P(£&1, &2, ..., £6)

for all choices of the signs on the right-hand side, so that

P(1,...,&) = Q&L -, &)
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where Q is a polynomial, and further that Q is a symmetric polynomial;
and these conditions are sufficient. Consequently (Aigebra, Chap. V, App. I),
S(RY)W®) is the algebra generated by the ! polynomial functions

= 2 Swbie b A<i<),

Moreover, the transcendence degree over R of the field of fractions of
S(RYHYWR) is I, so the t; are algebraically independent. Since the t; have
degree 2,4,...,2l, we conclude that the exponents of W(R) (Chap. V, § 6,
no. 3, Prop. 3) are:

1,3,5,...,20 — 1.

(XI) The only automorphism of the Dynkin graph is the identity element.
Thus, A(R) = W(R) and —1 € W(R). Since —1 transforms B to —B, we
conclude that wy = —1.

(XII) The group P(R")/Q(R") is dual to P(R)/Q(R), and hence is isomor-
phic to Z/2Z. Its non-trivial element permutes the vertices corresponding to
ap and oy and leaves the others fixed.

6. SYSTEMS OF TYPE C; (I > 2)

(I) The existence of root systems of type C; has been proved in no. 5,
since we have seen that the inverse system of a system of type B, is of type
Ci. A root system of type C; is thus obtained by taking in R! the vectors
+2¢; (1 <i<1), and +¢; +¢; (1 <i < j <1). The number of roots is 2{2.

IT) A basis of R can be obtained by taking the image under the ma;
D
a— &%) of the basis of the system considered in no. 5. We obtain:

Q) = €] — €2, Qg = €3 —E€3,..., Q-1 = El-1 — €I, q = 2¢].

The positive roots are the 2¢; and the &; £ ¢; (i < j).
(IIT) The Coxeter number is the same as for the inverse system: h = 21.

(IV) Let & = 2e1 = 201 + 22+ - -+ 21 + oy, which is a root. The sum
of its coordinates relative to (a;) is 2l — 1 = h — 1. Hence, & is the highest
root. We have (&|a;) = 0 for ¢ # I, (&|oy) = 2. Thus, the completed Dynkin
graph is

) a Fl—z % ¥

(V) We have already determined R, which is of type B;. By formula (19)
of § 1, no. 12 and by no. 5 (V), the square of the length of 2¢; for Py is

(+1)@-2) " (@-2)") " =+1)7h
thus, ®r(z,y) = (z]y)/4(1 + 1).
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We have y(R) = y(R") = (1 + 1)(4l — 2).
(VI) The fundamental weights are easily found:

w; =€1+ex+ - +¢

) ) 1 .
=a;+20+ -+ (i — a1 +z(a,~+ai+1+~-+§az) (<L)

(VII) The sum of the positive roots is

2p:2l6‘1+(2l—2)€2+"'+4€1_1+26l
=21a1+2(2l—1)a3+~~+i(2l—i+1)ai+-~-

1
e+ -1+ 2)og-1 + §l(l +1ay.

(VIII) By no. 4 and no. 5 (VIII), Q(R) = L;, P(R) = Lo; P(R)/Q(R) is
isomorphic to Z/2Z, and the connection index is 2.

(IX) and (X) These data depend only on W(R), and so are the same as
for type B;.

(XI) The same argument as in no. 5 shows that A(R) = W(R) and
wo = —1.

(XII) The single non-identity element of P(R”)/Q(R") defines the unique
non-trivial automorphism of the completed Dynkin graph: it interchanges the
vertices corresponding to a;; and o;_; for 0 < j < 1.

7. SYSTEMS OF TYPE A; (I > 1)

141
(I) and (II) Let V be the hyperplane in E = R with equation 21 & =0.
Replacing [ by [ + 1 in no. 5, we obtain a system R’ of type B;;; in E with
basis

Q1 =€1 — €2y, Qg =€E2 —E€3,...,0] =& — €141, Q41 = El41-

Since aji,...,o; generate V, R = R’ NV is a root system in V with basis
(a1,...,a;) (§ 1, no. 7, Cor. 4 of Prop. 20). By the calculation of the scalar
products in no. 5, it is immediate that R is of type A;. The elements of R are
thee; —e; (1 #7,1<i<1+1,1<j<l+1). There are n = [(l + 1) roots.
The positive roots are the €; — €; where ¢ < j.

(IIT) We have h=n/l =1+ 1.

(IV) Let @ = €1 — €141 = a1 + a2 + - - - + ay, which is a root. The sum of
its coordinates relative to (a;) is I = h — 1. Hence & is the highest root.
For | =1, & = oy so (&|a1) = 2; the Coxeter graph of the group W, (R)
is
OLO .
oy
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For | > 2, (&la;) =0 for 0 < % < ! and (@&|oy) = (&|ay) = 1. Hence the
completed Dynkin graph is:

@y xg -1 %

(V) Identifying V with its dual using the scalar product, we have o™ =
22— o foralla € R, so R"=R.

(ala)

For the form ®g, the length of the roots is h=1/2 = (I + 1)~/2 (§ 1,
no. 12); so @,(z,y) = (z|y)/2(l +1).

We have v(R) = (I +1)? (§ 1, no. 12, formula (20)).

(VI) Let (ws)1<i<t be the family of fundamental weights. Put
I+1
wi= X &yej,  with &; € R.
J:
The conditions (w;|a;) = 6;; and w; € V give
I+1
&ii — &iiv1 =1, & —&ij+1 =0 for j #1, ]gl &; =0,
which easily lead to

1
wi=El+"'+8i—l+—1‘(81+"'+61+1)

1
= H-_l((l —1 + 1)((11 + 20[2 + -+ (Z - 1)(17;_1)

+i((l—i+ 1o+ (=g + -+ ).

(VII) The sum of the positive roots is
2p=l€1+(l—2)62+(l—4)63+"'—(l—2)€l —ler
=log+2(l—Dag+ - +i(l —i4+ Do + -+ loy.

(VII) Introduce in E = R the subgroup Loy of no. 4. Let p be the
orthogonal projection of E onto V. By § 1, no. 10, Prop. 28, we have

QR)=QR)NV=LyNV, and P(R)=p(P(R));

in view of the fact that the last fundamental weight of R’ is orthogonal to

V, we have P(R) = p(Q(R’)) = p(Lo). Thus, P(R) is the group generated by
141

the e; — &, and by p(e1) = &1 — (1 +1)7? 261, so

P(R) = QR) + Z(e1 — (I +1)7" l§ €i)-
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Now ! + 1 is the smallest integer m > 0 such that mp(e;) € Q(R). Thus
P(R)/Q(R) is isomorphic to Z/(l + 1)Z and the connection index is [ + 1.

(IX) and (X) For any automorphism g of V, let ¢(g) be the automorphism
of E that extends g and leaves €1 +&5+- - - +¢; invariant. If g is the orthogonal
reflection s.,_¢;|V, ¢(g) is equal to s¢,_¢;, which interchanges ¢; and &; and
leaves fixed the e with k distinct from ¢ and j. Let

X= {€1a€2,' .. :€l+1}-

Then g — ¢(g)|X is an isomorphism from W(R) to the symmetric group of
X. Thus, W(R) is isomorphic to the symmetric group &, 1, and so is of order
(+nn

The symmetric algebra S(E) can be identified canonically with the alge-
bra of polynomial functions P(&y,£2,...,&4+1) on E. Let G = ¢(W(R)). By
the preceding paragraph, the set S(E)® of elements of S(E) invariant un-
der G is the set of symmetric polynomials (Algebra, Chap. V, App. I), and
consequently (ibid.) is the algebra generated by the functions

si= 2 Ewér) -6 (ISi<I+T).
7‘€61+1
The algebra S(V) can be identified with the restrictions to V of the poly-
nomial functions on E. If P € S(E)€, the restriction of P to V is clearly
invariant under W(R). Conversely, if Q € S(V)W®)  there exists P € S(E)
extending Q; replacing P by ((I+1)!)~! ;} 9(P), which has the same restric-
g

tion as P to V, we can assume that P € S(E)©. Thus, S(V)W®) is generated
by the s; = s}|V. Now s; = 0. Moreover, the transcendence degree over R of
the field of fractions of S(V)W(®) is I, so the s; (2 < i < [+1) are algebraically
independent. Since the s; are of degrees 2, 3,...,l+1, the exponents of W(R)
are

1,2,3,...,1.

(XI) For I =1, A(R) = W(R) = Z/2Z and wo = —1.

Forl > 2, let € € A(R) be the automorphism that transforms a; to aj41—.
It is clear that the automorphism induced by & is the unique non-trivial
automorphism of the Dynkin graph. The group A(R)/W(R) is isomorphic
to Z/2Z. Since —1 is an element of A(R) which does not belong to W(R)
by (IX) and (X), we see that A(R) is isomorphic to W(R) x Z/2Z. We have
wp = —€.

(XII) The group P(R")/Q(R") is cyclic of order [ + 1 and acts on the
completed Dynkin graph by circular permutations. If [ > 2, the unique non-
identity element of A(R)/W(R) acts on P(R")/Q(R") by the automorphism
T —.



220 ROOT SYSTEMS Ch. VI
8. SYSTEMS OF TYPE D; (I > 3)

(I) Consider in V = R the group Lo (no. 4). The set R of a € Lg such
that (c|a) = 2 consists of the vectors ¢; £ ¢; (1 < i < j < I). It is clear
that R generates V and that 2(c|8)/(ala) € Z for all @, € R. Thus R is a
reduced root system in V (no. 4). The number of roots is n = 2[(l — 1).

(II) Put
Q) =€1 —€2, Qg =E2 —€3,...,0—-1=E-1— €, 0 =€E-1+E
The following formulas are immediate:

€ —€j =05+ 041+ -+ aj (1<3)
g tej =it a1+ + a1+ 205 + 205401+
2o ta1t+a 1<ji<li-2)
gite 1=+t +tao ((<Ii-1)
gtea=otopm+ - taota (E<l-1)
El-1t& =a
so (ai1,...,04) is a basis if R (§ 1, no. 2, Cor. 3 of Prop. 20). Further,
| ai ||I>= 2 for all i, (aslaj) = Oforz+1 < j except for i =1 —2,5 =1
in which case (a;— 2|al) = -1, (a|ai41) = =1 for ¢ < I — 2, and finally

(aj—1|aq) = —1; the Dynkin graph of R is thus of type D;. The positive roots
are the g; £ ¢; for 7 < j.

(IIT) We have h =n/l = 2(1 — 1).
(IV) Let & = €1 + €2 = a1 + 202 + -+ + 204—2 + aj—1 + oy, which is a
root. The sum of its coordinates relative to (a;) is
20-3=h-1.

Hence & is the highest root.
If | = 3, we have

(&lar) =0, (Gloz) = (alas) =
Ifl > 4, we have (&|a;) = 0 for ¢ # 2 and (&|az) = 1. Hence the completed
Dynkin graph is:

) o
oy \o___o_ __o__o/“l-l
o’/ oy ag Qg g N\

L]

(V) Since (a|a) = 2 for all « € R, we have R™ = R.
The length of the roots for &g is h~1/2 = (21 — 2)~1/2. Hence

Pr(z,y) = (aly)/(41 —4) and ~(R)=4(-1)>%
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(VI) A calculation analogous to that in no. 7 gives the fundamental
weights:

w; =¢€1+e2+--+¢;
=0y +20+ -+ (@ —Dag—1 +i(o + o1 + -+ o—2)

1.
+ 51(0@-1 + o)

fori <1—1,

1
wi—1 = 5(61 t+eot et e-1—e)

1 1 1
= 5(0[1 +2a+ -+ (1 —2)ay_2+ §lal_1 + E(l - 2)ay),

1
w=z(E1+er+ a2t e—1+e)
2
1 1 1
= 5(al +200+ -+ (1 —2)oy_2 + 5(l —2)ay_1 + Elal).
(VII) The sum of the positive roots is

20=2(1—-1)e; +2(I —2)ea +--- + 2¢11
1—

222(il_i(i+1)) z+1(1—1)

- i=1 2 % 2

(VII) The *¢;+¢; generate Ly (no. 4), so Q(R) = L;. Hence Q(R") =L,
and consequently P(R) = Ly (no. 4). By no. 4, P(R)/Q(R) is isomorphic to
Z/4Z for | odd, and to Z/2Z x Z/2Z for | even. In the first case, P(R)/Q(R)
is generated by the canonical image of w; (and also by that of w;_1). In the
second case, P(R)/Q(R) is generated by the canonical images of w;—; and wj.
In both cases the connection index is 4.

(IX) and (X) In R!, the orthogonal reflection s.,_. ; (i # j) interchanges
g; and ¢; and leaves invariant the e; with k distinct from 4 and j. The s¢,_,
generate a group G; isomorphic to the symmetric group &;. On the other
hand, s;; = S¢,—¢, Se;+¢; transforms €; to —¢;, €; to —¢; and leaves invariant
the e, with k distinct from ¢ and j. The s;; generate a group Go, the set

of automorphisms v of the vector space R! such that u(e;) = (—1)%¢; with
!

l:[l(—l)”f = 1. The group Gy is isomorphic to (Z/2Z)!~!, and G, is normal in

W(R), so W(R) is isomorphic to the semi-direct product of &; by (Z/2Z)! 1.
Consequently, its order is 2!=1.1!.

The polynomial functions t; of no. 5 are invariant under W(R), and so is
t = &&s ... &; moreover, t; = t2. Let P(&,...,£) be a polynomial invariant
under W(R). Let £7£5% ... " be a monomial featuring in P such that v; is
odd; then v; is odd for all j because the monomial (—1)"+*1£72£72 ... &
features in s;;(P), so v; + v; = 0 (mod. 2) and v; = 1 (mod. 2). Thus

(og—1 + ).
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P = P; +tP3, where all the monomials featuring in P; and P, have only even
exponents. Since P is invariant under the permutations of the &;, P; and Py
have the same property, and so can be written as polynomials in ¢;, ¢, ..., .
This proves that the algebra S(Rl)W(R) is generated by ti,ts,...,%_1,t.
Moreover, the transcendence degree of the field of fractions of S(RH)W®)
is I, so t1,ta,...,t—1,t are algebraically independent. We conclude that the
sequence of exponents, suitably ordered, is:

1,3,5,...,21— 5,21 — 3,1 — 1.

Note that | — 1 appears twice if [ is even, and once if [ is odd.

(XI) The automorphisms of the Dynkin graph are those of the underlying
graph. Thus:

1) If 1 =3, A(R)/W(R) is isomorphic to Z/2Z.

2) If I = 4, every permutation of the terminal vertices defines an auto-
morphism of the graph, so A(R)/W(R) is isomorphic to Ss.

3) If I > 5, the chains starting at the ramification point have length 1,1,
and [ —3 > 2. The only automorphism of the graph distinct from the identity
thus corresponds to the automorphism € € A(R) which interchanges o;_; and
oy and leaves fixed the oy for 1 < ¢ <1 —2. Thus A(R)/W(R) is isomorphic
to Z/2Z; moreover, A(R) is the semi-direct product of the group G; & §;
defined in (IX) by the group Gs consisting of the automorphisms u of R!
such that u(e;) = +e; for all 4.

If [ is even, —1 € W(R), so wp = —1. If [ is odd, —1 ¢ W(R), so A(R) =
W(R) x {1,—1} and wo = —¢.

(XII) For I even, P(R")/Q(R") has three elements of order 2, namely
wi,w;—1 and w;. Since w; (resp. w;—1) interchanges the vertices corresponding
to ap and o (resp. ay—1), it interchanges those corresponding to a; and o;_,
(resp. oy) and also those corresponding to a; and a;_; for

2<j<l—2

We have w1 = wjwi—1.

For | odd, P(R")/Q(R") has two elements of order 4, namely w;_; and w;,
and one element of order 2, equal to w;. Indeed, w; interchanges the vertices
corresponding to ap and oy, so it leaves fixed the vertices corresponding to
o for 2 < j < 1—2 and is necessarily of order 2. Consequently w is of order 4
and transforms the vertex corresponding to ag (resp. ay, resp. ai, resp. 1)
to that corresponding to oy (resp. a1, resp. ay—1, resp. o), and interchanges
the vertices corresponding to a; and a;_; for 2 < j < 1—2. We have wy = wlz
and wi—1 = w}.

For | # 4, the non-identity element of A(R)/W(R) interchanges the
vertices corresponding to a;—; and «;, and consequently interchanges the
elements w;—; and w; of P(R7)/Q(R"). For ! odd, the automorphism of
P(R")/Q(R") thus obtained is the map z — —z.
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For I = 4, A(R)/W(R) can be identified with the group of permutations
of {1, 3,4} and acts by permutations of the indices on {wi,ws,ws}.

9. SYSTEM OF TYPE F,

(I) Consider the group Ly (no. 4) in R*. Let R be the set of o € Ly such
that (a|a) =1 or (a|a) = 2; it contains the vectors

+e;, xeite; (1<), (:I:sl teg ez tey).

Conversely, if @ € R, the coordinates of a can only take the values 0, :I: ,+1
(since (2)2 > 2); either these coordlnates are all integers, glvmg the vectors
+ei, :I:sz + ¢;, or they are all equal to :I: , giving the vectors 3 Lite, e £
€3 + 64)

We show that, for , 8 € R, we have 2(¢|B8)/(a|a) € Z. If & = +¢; or
o = 1(+e; &3 £ 3 £ &4), then (a|a) = 1 and we have seen in no. 4 that
(«|B) € %Z since a, B € L. If @ = +¢; +¢;, then (a]a) = 2 and we have seen
in no. 4 that (a|B) € Z since @ € L; and 3 € L. Hence, R is a reduced root
system in R* (no. 4). The number of roots is n = 8 + ( )4+ 2% =48.

(I1) Give R* the lexicographic order defined by the basis (1, €2, €3,¢€4)
(§ 1, no. 7). In particular, we have £ > €3 > €3 > 4. The positive roots are

1
Eiy Ei:l:(:‘j (l<_7), 5(61 +egteg :|:€4).

The smallest root is a3 = 4. Among the roots belonging to Rez + Rey but
not to Rey, the smallest is g = €3 — 4. Among the positive roots belonging
to Regy + Res + Rey but not to Res + Rey, the smallest is a; = €5 — €3.
Among the positive roots not belonging to Res + Rez + Rey, the smallest is
Q4 = %(el — g9 —€3 —é€4). None of the a; is a sum of 2 positive roots. Hence,
(a1, a2,a3,04) is a basis of R (§ 1, no. 6, Cor. 1 to Prop. 19). We have
o1 [IP=ll a2 II°= 2,1 @3 =]l ea [I°=1, (e1|az) = (as|as) = —1, (asles) =
-3, (a1]as) = (a1|og) = (e2|as) = 0. We see that the Dynkin graph of R is
of type F4, and hence is irreducible.

(IIT) We have h = 7 = 12.

(IV) Let & = 1 +¢e2 = 201 + 302 + 403 + 204. The sum of the coordinates
of & with respect to (a;) is 11 = h — 1, so & is the highest root. We have
(&lan) = 1, (&laz) = (&las) = (&las) =0.

The completed Dynkin graph is

O —_—0
@) L2 as %y

(V) The formula o™ = T — the set of vectors 2¢;, +e; ¢,
+e; + €3 £ €3 + £4. The Dynkin graph of R™ is obtained from that of R by
the procedure explained in no. 2, and we see that R is of type Fy4.
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The roots not orthogonal to § = e; are +e;1,+e1 ¢ (j > 2), and
2(de1 £ &2 £ €3 £ £4); the number n(a|8) = 2(a|B) is equal to +2 for the

first 14 of these roots and to +1 for the last 16; thus, for &g, the square of
the length of 3 is 4(14.4 + 16.1)~! = 5%; hence

Sg(z,y) = (—xllgl)

We now apply formula (18) of § 1, no. 12, with z = y = 3; this gives

1 1/4 1
SO
7(R) = 2.3%.

(VI) Calculating the fundamental weights gives

w1 =¢€1+¢e2 =201+ 302 +4a3+ 204 =0
wo = 2671 + €9 + €3 = 3a1 + 6ag + 8asz + 4oy

w3 = %(361 +ea+e3+es) =2a; +4das + 6as + 3ay
wyq = €1 = a1 + 205 + 3a3 + 204.
(VII) The sum of the positive roots is
2p = 1le; + 5e2 + 3e3 + €4 = 161 + 302 + 42a3 + 2204.

(VIII) We have Q(R) = Lz (no. 4), and P(R) = Q(R) by (VI). Hence, the
connection index is 1.
(IX) The family of exponents has 4 terms, and since h = 12, it must con-

tain the integers 1,5, 7, 11, coprime to 12 (§ 1, no. 11, Prop. 30); consequently,
these are all the exponents of W(R).

(X) and (XI) The only automorphism of the Dynkin graph is the identity,
so A(R) = W(R) and wo = —1. Let R’ be the set of longest elements of
R, that is, the +e; & €;: R’ is the root system of type Dy constructed in
no. 8. Clearly, every element of A(R) is an element of A(R’). Conversely, an
element of A(R’) leaves L stable (since it is generated by R’), hence also its
associated Ly, and hence also R. So W(R) = A(R) = A(R’). By no. 8, W(R)
is the semi-direct product of &3 by W(R'), W(R’) itself being the semi-direct
product of &4 by (Z/2Z)3. The order of W(R) is 3!4!23 = 27.32.
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10. SYSTEM OF TYPE Eg

(I) Consider the group Lz (no. 4) in R®. Let R be the set of a € Lz such
that (a|a) = 2; it contains the vectors
18 . 8
+e; £¢5 (1 <j), 3 El(—l)"(‘)ei (Zlu(z) even).
1= =

Conversely, if an element a € L3 is such that (a|a) = 2, its coordinates
must be among the values 0, :|:2, +1; by no. 4, either these coordinates are
all integers, giving the vectors +e; & €5, or they are all equal to 3 L with an
integer sum, giving the vectors

138
—2‘2( )U(‘)E

with E v(i) even.

We have seen (no. 4) that (a|8) € Z for all a,8 € Ls. Hence, R is a
reduced root system. The number of roots is n = (5 ) 4427 = 240.

(II) Let p be the vector (0,1,2,3,4,5,6,23) of Ls. No element of R is
8

orthogonal to p (this is clear for the +¢;=+e;; if & Zl(—l)”(‘)ei were orthogonal
=
6
to p, we would have Z:li(—l)"(i“) + 23(=1)¥® = 0, which is impossible
=

6
since Z:lz < 23). Hence (§ 1, no. 7, Cor. 2 of Prop. 20) the @ € R such that

(alp) > 0 are the positive roots relative to a certain chamber. These roots
are the £e; +¢; (i < j), and the

(es + zél(—l)"(i)fz‘)

DN =

with E v(i) even. We have (a|p) € Z for all & € R (no. 4), and («a|p) is equal
to 1 for the following roots:

1 1
5(51 +eg) — 5(52 +e3+egtes+es+er),

Qa3 =€) +€2, A3 =€2 —€1, Qg =E3 — €2, Q5 = €4 — €3,

Q) =

Qg = &5 — €y, Q7 = Eg — €5, g = E7 — €g,

and these eight vectors form a basis of R®. By § 1, no. 6, Cor. 1 of Prop. 19,
(a1, 2,...,ag) is a basis of R for which the positive roots are those which
have been defined above. We have

(cslas) = (as|as) = (aslar) = (ar|ag) = (as|az) = (aa|az) = (as|a) = -1,
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and (o;|a;) = 0 for all other pairs of indices. Hence, the Dynkin graph of R
is of type Eg, and R is irreducible.

(ITT) We have h = & = 30.
(IV) Let

a =¢e7+eg =2a; + 3as +4as + 6ay + bas + 4dag + 3ar + 2as,

which is a root. The sum of its coordinates with respect to (a;) is 29 = h—1, so
& is the highest root. It is orthogonal to all the o; except asg, and (&|ag) = 1.
Hence, the completed Dynkin graph is:

o o o o o
51 a3 rc oy g L2} Og
)
oy

(V) Since (a|a) =2 for all & € R, we have R" = R.
For &g, the squared length of the roots is 3—10 (§1, no. 12). Hence,
&g (z,y) = (z]y)/60 and v(R) =900 (§ 1, no. 12, formula (20)).

(VI) Calculating the fundamental weights gives
w1 = 2eg = 4ay + dag + Taz + 10a4 + 8as + 6ag + 4dar + 20
wo = %(51 +eo+€e3+ €4+ €5+ €6+ 7+ bes)
= 5a3 + 8asy + 10a3 + 15a4 + 12a5 + 9ag + 67 + 3ag

1
w3z = 5(—61 +éex+€e3+€4+ €5 +€6+€7+768)

= Tay + 10ag + 14as + 20a4 + 16as + 12a6 + 8ay + 4ag
wg =€3+€E4+€5+¢€6+ €7+ beg
= 10a; + 15as + 203 + 30ay + 24as5 + 18ag + 127 + 6ag
ws = €4 + €5 + €6 + €7 + 4eg
= 8a; + 12as + 16a3 + 2404 + 20as + 1506 + 107 + Hag
we = €5 + €6 + €7 + 3€8
= 6a; + 9as + 12a3 + 184 + 15a5 + 12a6 + 8a7 + 4ag
w7 =€+ €7+ 2¢3
= 4qa; 4 6ag + 8az + 12a4 + 10as + 8ag + 6ar + 3ag
wg = €7 + €8
= 5a; + 8aig + 10a3 + 15a4 + 12a5 + 9ag + 67 + 3ag = a.
(VII) Half the sum of the positive roots is the sum of the fundamental
weights (§ 1, no. 10, Prop. 29); this gives
p = €2 + 2e3 + 3e4 + 4es + Seg + 67 + 23eg
= 46 + 68as + 91asz + 135a4 + 110as + 84ag + 577 + 29asg.
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8
(VIII) The group Q(R) is generated by the &; + ¢; and %g:l €, and is

equal to Lz (no. 4). Hence P(R), which is associated to Q(R") = Q(R) = L,
is Ls (no. 4). The connection index is 1.

(IX) The family of exponents has 8 terms, and since h = 30, the integers
1,7,11,13,17,19, 23,29, coprime to 30, must feature in this family; conse-
quently, these are the exponents of W(R).

(X) From (IX) and Chap. V, § 6, no. 2, Cor. 1 of Prop. 3, it follows that
the order of W(R) is

2.8.12.14.18.20.24.30 = 2'4.35.52.7.

(XI) The only automorphism of the Dynkin graph is the identity since the
three chains issuing from the ramification point have distinct lengths. Hence,
A(R) =W(R) and wo = —1.

11. SYSTEM OF TYPE E;

(I) and (II) Let E = R®, and let Rg be the root system in E constructed
in no. 10. Let V be the hyperplane in E generated by the roots a;,...,ar of
Rg; it is orthogonal to the eighth fundamental weight w = 7 + €g of Rg.

Let R = RgNV. Then R is a reduced root system with basis (a1, ..., ar),
cf. § 1, no. 7, Cor. 4 of Prop. 20; hence, this system is of type E7. Its elements

are:
:I:Eizl:Ej (1 <’L<] <6), :l:(67—68),

1 8 _ 8

:|:5(57 —eg+ Zl(—l)”(‘)ei) with 21 v(i) odd.
1= 1=

The number of roots is n =2 + (g) 4+ 2% = 126. The positive roots are

te; + € (1<i<j<6); —€&7 t+ €8,

1 6 . 6
5(—er +est Z_:l(—l)"(‘)ei) with ;1 v(i) odd.

(IT) We have h = & = 18.

(IV) Let & = eg — €7 = 201 + 22 + 3a3 + 4oy + 3as + 2a6 + a7, which
is a root. The sum of its coordinates with respect to (¢;) is 17 = h — 1.
It is therefore the highest root. It is orthogonal to a; for 2 < 7 < 7, and
(&]ay) = 1. The completed Dynkin graph is

o o o 0
oy ag "14 x5 g L2

o
g
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(V) Since (a|a) =2 for all & € R, we have R"=R.
For &R, the squared length of the roots is —1%, so

Pr(z,y) = (z]y)/36, and ~(R)=2%.3*

(§ 1, no. 12, formula (20)).

SO

QR)=QRs)NV=LzNV

(VI) Calculating the fundamental weights gives

w1 = €8 — €7 = 201 + 209 + 3a3 + 4oy + 3as + 206 + 7

1
w2=§(€1 +éeg+es+eqtes+eg— 267 + 2€5)

1
= 5(4011 + Tag + 8ag + 12a4 + 9as5 + 8ag + 3(17)

1
w3 = E(—€1 +eo+tezteqgt 5+ €6 —3€7+3€3)
= 3a1 + 4as + 6az + 8ay + 6as + 4dag + 2a7

Wy =€3+E4+€5+86+2(€3 —67)
= 4oy + 6as + 8az + 124 + a5 + 6ag + 3oy

3
Wy = €4 +65+€6+§(68—€7)

1
= 5(60:1 + 9as + 12a3 + 18ay + 15a5 + 106 + 5ar)

We = €5+ € —E7+ €3
= 2a1 + 3ag + 4ag + 6a4 + bas + 4ag + 207

1
wy = € + 5(88 - 87)

1
= 5(2041 + 3ap + 4as + 6y + Sas + dae + 3ar).

2p = 2€9 + 4e3 + 64 + 8es + 10 — 17e7 + 17¢eg
= 3401 + 49a + 66a3 + 964 + TS5 + 5206 + 270x7.

(VIII) By no. 10 (VIII) and § 1, no. 10, Prop. 28, we have

Ch. VI

7
(VII) The sum 2p of the positive roots is 2 .Elwi (§ 1, no. 10, Prop. 29),
=

and P(R) = p(P(Rs)) = p(Ls),

where p denotes the orthogonal projection of E onto V. The group Q(R) has
basis (a1, ..., ar); the group P(R) is generated by Q(R) and

1
plag) = ag — Ew.
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We have w € P(Rs), 1w ¢ P(Rg), so 2p(as) € Q(R) and p(as) ¢ Q(R).
Thus, P(R)/Q(R) is isomorphic to Z/2Z and is generated by, for example,
the image of wr.

The connection index is 2.

(IX) The sequence of exponents of W(R) has 7 terms. The numbers
1,5,7,11,13,17, coprime to h = 18, feature in this sequence. The last ex-
ponent m must be such that m +m = 18 (Chap. V, § 6, no. 2, formula (2)).
Hence, the sequence of exponents is

1,5,7,9,11,13, 17.

(X) From (IX) and Chap. V, § 6, no. 2, Cor. 1 of Prop. 3, it follows that
the order of W(R) is

2.6.8.10.12.14.18 = 210.3% 5.7.

(XI) The only automorphism of the Dynkin graph is the identity, so
AR)=W(R) and wo = —1.

(XII) P(R")/Q(R") has only one non-identity element. It interchanges the
vertices corresponding to ag and a7, a; and ag, a3 and as, and leaves as
and oy fixed.

12. SYSTEM OF TYPE Eg¢

(I) and (II) Let E = R®, and let Rg be the root system in E constructed in
no. 10. Let V be the vector subspace of E generated by the roots as, ..., as
of Rg; this is the orthogonal complement of the plane generated by the last
two fundamental weights w = g7 + €3 and © = g6 + €7 + 2¢5 of Rg.

Let R = Rg N'V. This is a reduced root system with basis (aq,...,as),
and hence of type Eg. Its elements are:

ﬂ:Ei:I:Ej (1<2<]<5),

1 5 ‘ 5
:|:§(Eg —e7 — g6+ Z:l(—l)"(‘)ei) with Z:l v(i) even.

The number of roots is n = (3) 4 + 25 = 72. The positive roots are

:|:€i+€j (1<Z<j<5),

1 5 . 5
5(53 — &7 — g6+ z:l(—l)"(’)ei) with Z v(t) even.

= 1=

(IIT) We have h = ¢
(IV) Let

12.

.1
a=§(€1 +e2+e3+64+65— €6 — €7+ Es)

= a1 + 203 + 203 + 3o + 205 + g,
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which is a root. The sum of its coordinates with respect to (a;) is 11 = h—1,
so & is the highest root. It is orthogonal to a1, a3, a4, a5, a6, and (&|az) = 1.
The completed Dynkin graph is

o o o o o
L3 ag oy ag ag
L2

(V) Since (a|a) = 2 for all a € R, we have R" =R.
For &g, the squared length of the roots is ﬁ, )

Pr(z,y) = (zly)/24, and ~(R)=144.
(VI) Calculating the fundamental weights gives:

2 1
wy = 5(68 —e7 —€gg) = §(4a1 + 3z + bas + 6ay + 4as + 206)
1
wo = 5(61 +exsteztest+es—eg—e7+es)
=1+ 2a2 +2a3+3a4 + 205+ =&

5 1
w3 = 5(68 —er—¢e) + 5(—e1+ez ez teates)

1
= 5(5051 + 6z + 10as + 1204 + 8as + 4ag)

Wg =€E3+E4+€5—€g—€E7+ €3
= 201 + 3ag + 4az + 6ay + das + 204

2
w5=§(€3—67—66)+64+65

1
= 5(4011 + 6as + 8as + 12a4 + 10as + 5(16)

1
we = '3:(58 — €7 —€6) + €5

1
= §(2a1 + 3ag + 4az + 60y + Sas + 4osg).

6
(VII) Half the sum of the positive roots is ; w;, SO

p = €2+ 2e3 + 3e4 + 4e5 + 4(eg — €7 — €6)
= 8a + 1las + 15a3 + 21ay + 15a5 + 8ag.
(VIII) By no. 10 (VIII) and § 1, no. 10, Prop. 28,

QR)=QRg)NV=LzNV and P(R)=p(P(Rs)) = p(Ls),
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where p denotes the orthogonal projection of E onto V. We have

plaz) = a7 — §7r +w, plag)=as+m—2w.
The group Q(R) has basis (ai,...,ag). The group P(R) is generated by
Q(R) and p(ar), since p(ag) € P(Rg) NV = Q(Rg) NV = Q(R): We have
3p(ar) € Q(R) and p(ay) ¢ Q(R). Hence, the group P(R)/Q(R) is isomorphic
to Z/3Z; it is generated, for example, by the image of wg.

The connection index is 3.

(IX) and (X) By § 2, no. 4, Prop. 7, the order of the Weyl group is
6!1.2.2.3.2.1.3 = 27.34.5. The sequence of exponents has 6 terms between 1
and 11, and contains the integers 1,5,7,11 which are coprime to 12. The
other exponents m, m’ are integers such that

m+m' =12,

(m+1)(m +1)Q+1D)(G+1)(7T+1)(11+1) = 27.3%5,

in view of Chap. V, § 6, no. 2, formula (2) and Cor. 1 of Prop. 3. The second
relation gives (m + 1)(m/ + 1) = 45, and since m + m' + 2 = 14, we obtain
m = 4,m' = 8. Hence, the sequence of exponents is

1,4,5,7,8,11.

(XI) and (XII) Since the roots all have the same length, the automor-
phisms of the Dynkin graph are those of the underlying graph. Apart from the
identity, there is only the automorphism € which transforms a1, as, a4, as, ag,
ay into ag, as, a4, a3, 01, a2, respectively. Hence, A(R)/W(R) is isomorphic
to Z/2Z; since —1 € W(R) (Chap. V, §6, no. 2, Cor. 3 of Prop. 3), A(R)
is isomorphic to W(R) x {1,—1} and wp can be identified with —e. It fol-
lows that the non-identity element of A(R)/W(R) defines the automorphism
z — —z of P(R")/Q(R").

Moreover, P(R")/Q(R") has two non-identity elements of order 3. They
define the two automorphisms of order 3 of the completed Dynkin graph.

13. SYSTEM OF TYPE G2

(I) Let E be the hyperplane in R? with equation

&L+&+E&=0.

Let R be the set of a € LoNV such that (a|a) = 2 or (a|a) = 6. The elements
of R are
:|:(€1 - 62), + (81 - 63), :I:(E2 — 83), :|:(2€1 — &9 — 63),
:|:(282—€1 —63), :t(2€3—€1 —82).
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Then, R generates V, and 2((,;%) € Z for all o, € R: this is clear if 8 =
+(e; — €5) with i # j; if B = 21 — €2 — €3 for example, we have («|8) € 3Z,
and again our assertion holds. Hence, R is a reduced root system in V. The

number of roots is n = 12.
(II) Put iy = &1 — €3, = —2¢7 + €2 + €3. Then the roots are

tai, E(a1+a2), £ (2a1+a2), *as,
:|:(30£1 + Clz), + (3a1 + 20[2).

Hence, (a1, @) is a basis of R. We have || a1 ||2= 2, oz ||?= 6, (a1]|az) = -3,
so R is a system of type Ga. The positive roots are oy, 1 + 2,201 + ay,
3a; + ag, 3a; + 2as.

(ITI) We have h = & = 6.

(IV) The highest root is & = 3a; + 2a2 = —e1 — €2 + 2e3. We have
(&]ay) =0, (&|az) = 3. The completed Dynkin graph is

oce——==0——0
a a2

(V) The inverse system is the following set of vectors:

1
tai, *(a1+a2), £ (201 + as), :tgag,

1 1
:|:§(3a1 +a2), = §(3a1 + 2a).

There are 10 roots not orthogonal to a;; we have n(83, a1) = %1 for 4 of these
roots, n(8, @) = £3 for 4 others, and n(83, a;) = £2 for § = ta;. Hence, the
squared length of a; for @R is 4(4.1 +4.9+2.4)"! = 1—12 Hence, $r(z,y) =
(z|y)/24. We now apply formula (18) of §1, no. 12, with z = y = «ay; this
gives

1 1
24+4.-+4+4.- =~(R).
+4.+4 ¥(R)

L
12
so v(R) = 48.
(VI) and (VII) Half the sum of the positive roots is
p = 5a; + 3as.

The fundamental weights wy and w, are orthogonal to as and «;, hence
proportional to 2a; + a9 and 3a; + 2a. We have

w1 +wy = p =5a; + 3az = (201 + az2) + (Bar + 2a2).

Hence,
w1 =201 + a2, ws =3a; + 20 = a.
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(VII) Q(R) is generated by €1 — €3 and €3 —£3, for example. By (VI) and
(VI), P(R) = Q(R). The connection index is 1.

(IX) The family of exponents has 2 terms; since 1 and h — 1 = 5 are
exponents, they are the only ones.

(X) We have (al/,?m) = 3, so W(R) is isomorphic to the dihedral group
of order 12.

(XI) The only automorphism of the Dynkin diagram is the identity, so
A(R) =W(R) and wp = —1.

14. IRREDUCIBLE NON-REDUCED ROOT SYSTEMS

The irreducible, non-reduced root systems can be obtained from the irre-
ducible, reduced systems by using Props. 13 and 14 of §1, no. 4. For each
integer | > 1, there exists, up to isomorphism, a unique irreducible, non-
reduced root system of rank I: let R be a root system of type B;, A the set
of shortest roots of R; take the union of R and 2A. With the notation of no.
5, we obtain the 2[(l + 1) vectors

+e;, +2¢, 81;:|'_‘€j (’L<])






EXERCISES

§1.

All the root systems considered below are relative to real vector spaces. We
denote by (z]y) a scalar product invariant under the Weyl group (cf. no. 3).

1) Let R be a root system, R = Ry UR, a partition of R. Assume that, if z,y
are two elements of R; and if  + y (resp. ¢ — y) is a root, then z +y € R;
(resp. z — y € R;), where i = 1,2. Then, R is the direct sum of R; and Ro.
(By using the Cor. of Th. 1, no. 3, show that if x € R; and y € Ry then

(zly) =0.)

2) Let R be a root system, o and 3 two roots. If ¢ is a scalar such that f+ta €
R, then 2t € Z. (For n(8 + ta,a) = n(B,a) + 2t.) If « is indivisible, then
t € Z. (If not, show, by using Prop. 9, that there exists a root -y orthogonal
to a such that v+ fo € R; then (v + 2aa) > 0, so 2o € R.)

3) Let R be an irreducible non-reduced root system in V. There exists a non-
degenerate symmetric bilinear form & on V such that, if we identify V with
V* using @, we have R = R". (Use Prop. 13.)

4) Let I be a free Z-module of finite rank [, I'* the dual Z-module, I a finite
set of indices, (z;, z})icr a family of elements of I x I'* such that (z;,z}) = 2
foralli el s; = sy, ot Let V be the real vector space I' ®z R, Whose dual
V* can be 1dent1ﬁed with I™* ®z R. We also denote by s; the reflection s; ® 1
in V. Let R (resp. R') be the set of z; (resp. z}). Let E (resp. E’) be the
subspace of V (resp. V*) generated by R (resp. R’). Assume that s;(R) =R
for all . Then, R is a root system in E, E’ is canonically identified with the
dual of E and z} with z;” for all . If F (resp. F’ is the subspace of V (resp.
V*) consisting of the points invariant under all the s; (resp. !s;), then 'NF
(resp. I'* NF') generates F (resp. F'). If we put Iy = (I'NE)® (I'NF) (resp.

= (I*NE)® (I'*NF')), then I'/I} and I'* /Iy are isomorphic finite
groups.

5) Let R be an irreducible root system. For any 8 € R,
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167(R) = ( 2 n(a,8)*)( X n(8,)?)
a€R a€R
and consequently v(R) = v(AR) for any non-zero scalar X. (Use formulas (17)
and (19) of no. 12.)

6) a) Let A be an abelian group of finite type, and T a finite subset of A
not containing 0. There exists a subgroup H of A of finite index such that
HNT = @. (Let t € T. By using the structure of abelian groups of finite
type, construct a subgroup of A of finite index that does not contain ¢. Now
proceed by induction on Card(T').)

b) Let R be a root system and P a closed symmetric subset of R. There exists
a subgroup H of Q(R) of finite index such that P = HN R. (Pass to the
quotient by the subgroup of Q(R) generated by P, and use a) and Prop. 23.)

7) The connection index of a root system is equal to the determinant of its
Cartan matrix. (Use formula (14) of no. 10. Show on the other hand that, in
a real vector space with a scalar product, if (€1,...,&n), (€1, ..,€}) are two
bases such that (e;|e}) = d;;, then detc, . c,)(€1,...,€p) >0.)

8) Let R be a reduced root system, C a chamber, 20 the sum of the positive
elements of R”, P/(R) the set of z € P(R) such that (z,0) € Z. Then,
Q(R) C P'(R) C P(R), and P(R)/P'(R) is of order 1 or 2. Let (B1,...,0;) be
the basis of R” corresponding to C, and put 20 = ny 5 + - - - +n;6; where the
n; are integers > 0. Then, P(R) = P/(R) if and only if all the n; are even.

9 9) Let R be a root system, C a chamber. Put B(C) = {a,...,a},
R+(C) = {al, ey QY O, 7as}
(the a; being pairwise distinct), and & = a3 + -+ - + as.

a)Fori=1,2,...,s,put g, = £1. Let a* = €104 +- - + 5. If (a*|a;) >0
fori=1,...,l, then a* = aand ¢; = 1 for all i. (Let 7y (resp. §) be the sum of
the a; for which g; = 1 (resp. —1). Then, (v|as) — (8]ei) > 0, (y|as) + (8]e;) =
(ailai), SO
2(vlai) > (ou]ai);

since 2(7|ai)/(eslas) € Z, (v]es) > (ailas) = (eles), soy—a €C,y >,
y=aand § =0.)

b) For i = 1,2,...,s, let ¢; = £1. The set of €;a; is the set of roots > 0
relative to a chamber if and only if o* = Zeiai belongs to a chamber. (To

show that the condition is sufficient, let u; = 1 be such that (o*|p;0;) > 0.

There exists an element w € W(R) that transforms the set of y;a; into the

set of a;, and hence a* into a** = Zsmiaa(i), where 0 € &;. Applying a),
2

show that o** = «, so pe; = 1.)
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10) Let « be the highest root of an irreducible reduced root system R relative
to some basis. Then, o~ is the highest root of R” if and only if all the roots
are of the same length.

11) With the notation of Prop. 33 of no. 11, show that 6; + 6; is not a root
for any pair (,5).

12) Let R be a root system in V of rank > 3, (a1,..., ) a basis of R, V'
(resp. V") the subspace of V generated by the a; for ¢ > 2 (resp. i > 3),
R =RNV,R"=RNV". Let d (resp. d,d"”) be the determinant of the
Cartan matrix of R (resp. R’,R”). Assume that a; is orthogonal to all the
a; except ag, and that || oy ||=|| a2 ||. Show that d = 2d’ — d".

13) Let R be a reduced root system, (aq,...,a;) a basis of R and a =
c1a1 + - -+ + ¢y a root. Then, ¢;(a4]e;)/(e|a) € Z for all ¢. (Consider the
inverse system.)

14) Let R be an irreducible root system, A the greatest root length, S the set
of subsets of R consisting of pairwise orthogonal roots of length A. Then, any
two maximal elements of S are transformed into each other by W(R). (Use
Prop. 11, and Prop. 1 of Chap. V, §3, no. 3.)

15) Let R be a root system of rank [.

a) —1 € W(R) if and only if R contains ! roots that are pairwise strongly
orthogonal. (To show that the condition is necessary, argue by induction on
I using Prop. 1 of Chap. V, §3, no. 3.)

b) If w € W(R) is of order 2, there exists a set S of pairwise strongly orthog-
onal roots such that w is the product of the s, (o € S).

16) Let R be a root system, B a basis of R, and R the set of positive roots
relative to this basis. For w € W(R), put F,, = Ry Nw(—R4). Show that
the map w — F,, is a bijection from W(R) to the set of subsets F of R,
such that F and R4 - F are closed. (Apply Cor. 1 of Prop. 20 to the subset
P=R4+-F)U(-F))

9§ 17) Let R be a reduced root system and B a basis of R. For any susbet
J of B, let Wy be the subgroup of W(R) generated by the reflections s, for
a € J, and let wy be the longest element of W;. Let & be the set of w;.

a) Show that an element w € W(R) belongs to & if and only if
W(B) C R+(B) U (—B).

(To show that the condition is sufficient, denote by J; the set of & € B such
that w(a) € =B and put J = —w(J;). If a € J1, w(a) € —J and wyw(a) € B;
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if @ € B —J;, wyw(a) € Ry: otherwise w(a) would be positive and wyw(a)
negative, which would imply that w(a) belongs to the subsystem generated
by the § € J and that o belongs to the subsystem generated by the 3 € J;,
which is absurd. Deduce that wyw = 1.)

18) Let R be a root system and let P be a parabolic subset of R. Show that
the complement of P in R is closed.

19) Let R be a root system, and let  be a non-zero element of Q(R) of
minimal length. Show that z € R.

9 20) Let (@4,...,a;) be a basis of an irreducible reduced root system R. Let
r and p be two integers, with p > 2, such that:

(a]an) = -+ = (ar|ar) = p-(arsilaris) = - - = p(aufn).

a) Let a = ciay + - -+ + cioy be a root. Show that (a|a) = (a1]|@1) (in other
words, that « is a long root) if and only if p divides ¢,41,...,c.

b) Let h be the Coxeter number of W(R). Show that the number of longest
(resp. shortest) roots of R is equal to hr (resp. h(l —r)).

21) Let R be a root system and B a basis of R. Let a, 8 € B and w € W(R) be
such that f = w(a). Show that there exists a sequence a;, . .., a, of elements
of R and a sequence wy, ..., w,—1 of elements of W(R) such that

() =0a, a,=4p.

(ll) w=wWnp-1...-W1.

(lll) wi(ai) = Aj+1 for 1 < 1 <n-— 1.

(iv) For all 4 € [1,n — 1), there exist B; € B such that w; belongs to the
subgroup of W(R) generated by the reflections s,, and sg,.

9 22) With the assumptions and notations of Prop. 33 of no. 11, denote by
w1, ...,w; the fundamental weights of R.

a) Show that ¢~!(w;) = w; — ;. Deduce that 1 — ¢ maps P(R) to Q(R).

b) Let f be the connection index of R, and let my,...,m; be the exponents
of W(R). Show that

f=det(l-¢)= f[ (1—w™)=2" jli[l sin(m;m/h)

J=1

with w = e2mi/h,



§1. EXERCISES 239

¢) Let p be a prime number. Write h in the form h = p®H, with H not
divisible by p. Show that p divides f if and only if H divides one of the m;. 2

23) Let R be a reduced root system, and let X be a subset of P(R). Say that
X is saturated if the following condition is satisfied:

(S) For all p € X,a € R and 7 € Z such that ¢ is between 0 and (p,a’),
p—ia€X.
a) Show that every saturated subset is stable under the Weyl group W of R.

b) Show that, for any subset A of P(R), there exists a smallest saturated
subset S(A) of P(R) containing A.

¢) Let C be a chamber of R, and let p € P(R) N C be a dominant weight. Let
S(p) be the smallest saturated subset of P(R) containing p. Let X(p) be the
set of elements p’ € P(R) such that

(i) p = p’ mod. Q(R).

(ii) For all w € W, w(p") < w (with respect to the order relation defined by
C).

Show that X'(p) is finite, contains p, and is saturated. Conclude that S(p)
is contained in X(p).

d) Show that, if « is a longest element of R, S(a) = RU {0}.

24) We retain the notation and assumptions of the preceding exercise.
a) Let p € P(R), and let W.p be the orbit of p under W. Show that the

following conditions are equivalent:
(i) S(p) = W.p.
(i) (p,a”) = 0,1 or —1 for all & € R.

(If (ii) is not satisfied, construct an element g € S(p) such that (q|q) < (p|p),
and hence ¢ ¢ W.p.)

b) Let X be a non-empty saturated subset of P(R). Show that X contains an
element p satisfying conditions (i) and (ii) above. (Take p to be an element
of X of minimal length.)

c¢) Assume that R is irreducible. Let C be a chamber of R, let B = {a;}ic1
be the corresponding basis, and let

v =2 ey
k)

be the highest root of R”. Let J be the set of 1 € I such that n; = 1. Let p # 0
be a dominant weight. Show that conditions (i) and (ii) of a) are equivalent
to each of the following conditions:

2 This exercise, hitherto unpublished, was communicated to us by R. Steinberg.
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(iii) (p,7*) = 1.
(iv) There exists ¢ € J such that p is equal to the corresponding fundamental
weight.

A weight p satisfying these conditions is called minuscule. Show that every
non-empty saturated subset of P(R) contains 0 or a minuscule weight.

§2.
We denote by R a reduced root system in a real vector space V.

1) Let z € V and let W(z) be the subgroup of W(R) consisting of the elements
w such that

w(z) —z € QR).
Show that W(z) is generated by reflections. (Use the affine Weyl group of
R".)

2) Assume that R is irreducible. Let {aq,...,o} be a basis of R, let & =
_ n;a; be the highest root of R and let f be the connection index of R. Show
1

that f — 1 is equal to the number of indices ¢ such that n; = 1.

3) With the notation and assumptions of no. 3, let u be an automorphism of
the affine space E that permutes the hyperplanes L, (o € R,k € Z). Show
that u is a displacement. (If ug is the linear map associated to u, show that
the transpose of u leaves R stable, and hence belongs to the group A(R).)
Deduce that G is the normaliser of W, in the group of automorphisms of the
affine space E.

4) Let C’ be a chamber relative to W(R) in V*, and let C be the alcove
with vertex 0 contained in C'. Let S, (resp. S) be the set of reflections in the
walls of C (resp. C'). The pairs (W,,S,) and (W,S) are Coxeter systems,
and S C S,. Show that an element w € W, is (S, @)-reduced (Chap. IV, §3,
Exerc. 3) if and only if w(C) C C'.

9 5) Assume that R is irreducible, and choose a chamber C of R in V; denote
by B the corresponding basis of R.

a) Show that the minuscule weights (§ 1, Exerc. 24) of R form a system of
representatives in P(R) of the non-zero elements of P(R)/Q(R). (Apply to
R’ the corollary of Prop. 6.)

b) Let X be a saturated subset of Q(R) (§ 1, Exerc. 23). Assume that X
is non-empty and not reduced to {0}. Let p be a non-zero element of X of
minimal length. Show that p € R. (In view of a), p does not satisfy condition
(ii) of Exerc. 24 of §1; hence, there exists a € R such that (p,a”) > 2, so
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p — a € X. Since the length of p — « is strictly less than that of p, p—a =10
sop€eR.)

¢) Let p be a dominant weight not belonging to Q(R). Show that the saturated
subset S(p) generated by p (cf. §1, Exerc. 23) contains a unique minuscule
weight. (Remark that S(p) is contained in a non-trivial class mod. Q(R);
conclude by applying a) and Exerc. 24 c) of §1.)

d) Let p be a dominant weight not belonging to Q(R). Prove that the following
two properties are equivalent:

(i) p is minuscule.

(v) There is no dominant weight g 7 p such that p— g is a linear combination
of elements of B with non-negative integer coefficients.

(If q satisfies the conditions of (v), let p; be a minuscule weight belonging to
S(q). Then, p; = p mod. Q(R), p1 < p, and a) shows that p is not minuscule.
Hence, (i) = (v). Conversely, if p is not minuscule, let ¢ € S(p)-W.p;
transforming g by an element of W if necessary, we can assume that ¢ € C;
by Exerc. 23 of §1, ¢ < p, g # p, and ¢ = p mod. Q(R). Hence, (v) = (i).)

§3.
The notations and assumptions are those of nos. 2, 3, 4.
1) a) Show that, for all ¢ between 1 and [, there exists a unique derivation
D; of A[P] satisfying the following conditions:
a1) D; is A-linear.
az) Di(e*7) = 6;;€*7 (8;; being the Kronecker symbol).

b) Let (7;)1<i<i be a family of elements of A[P]W satisfying the condition of
Theorem 1. Show that
det(Di(wj)) =d.

(Show that det(D;(z;)) is anti-invariant and has maximal term e, hence the
result if 2 is not a zero divisor in A. Treat the general case by using the
principle of permanence of algebraic identities.) 3

2) Let P’ be a subgroup of P(R) containing Q(R). Show that P’ is stable

under W. Construct an example where the algebra A[P]W is not isomorphic
to a polynomial algebra (take for R the product of two systems of rank 1).

3 This exercise, hitherto unpublished, was communicated to us by R. Steinberg.
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§4.

If R is a root system, denote by W+ (R) the set of elements of W(R) of
determinant 1.

9 1) Let R be a root system of type Es.
a) Show that if @, 8 € R are congruent modulo 2Q(R), then § = +a.

b) Deduce from a) that, if w € W(R) acts trivially on Q(R)/2Q(R), then
w = *1.

¢) With the notation of no. 10, show that the quadratic form (z|z) on Q(R)
defines by passage to the quotient a non-degenerate quadratic form gg on the
Fa-vector space Q(R)/2Q(R). Show that the pseudo-discriminant of gg (cf.
Algebra, Chap. IX, §9, Exerc. 9) is zero, and that gs is of index 4.

d) Let O(gs) be the orthogonal group of Q(R)/2Q(R) for this form. Define,
by passing to the quotient, a homomorphism

h: W(R) — O(gs)-
Show (by comparing orders) that the sequence
1— {1, -1} —» W(R) = O(gs) = 1
is exact.

e) Show that the image of W*(R) under h is the subgroup O* (gs) of O(gs)
defined in Algebra, Chap. IX, §9, no. 5. Deduce that W+(R)/{1,—1} is a
simple non-abelian group.

9 2) Let R be a root system of type Eg.

a) Put E = Q(R)/3P(R). This is an F3-vector space of dimension 5. With
the notation of no. 12, show that the scalar product (z|y) defines on E a non-
degenerate symmetric bilinear form ¢. Show that any two distinct elements
of R have distinct images in E.

b) Let O(y) be the orthogonal group of ¢. Then, O(p) = {1, -1} x SO(p).
The spinor norm defines a surjective homomorphism from SO(y) to {1, -1}
whose kernel is denoted by SO*(yp). The group SO™(y) is simple of or-
der 25920. The quotient O(p)/SO™ (i) is of type (2,2). Deduce that O(¢p)
contains a unique subgroup §2(¢) of index 2, distinct from SO(y) and not
containing —1.

¢) Every element of A(R) defines by passage to the quotient an element of
O(p). Show (by comparing orders) that this gives a homomorphism from
A(R) to O(¢p). The image of W(R) under this homomorphism is £2(¢), and
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that of W+ (R) is SO (¢). Hence, W(R) is an extension of Z/2Z by a simple
group of order 25920.

d) Let F = Q(R)/2Q(R). This is an Fa-vector space of dimension 6. Show
that the quadratic form %(z|z) defines by passage to the quotient a non-
degenerate quadratic form gg on F, of pseudo-discriminant equal to 1. If
O(ge) denotes the corresponding orthogonal group, define, by passing to the
quotient, a homomorphism

h:W(R) — O(gs).

Show that h is injective (note that —1 ¢ W(R)), and then that it is an
isomorphism (compare orders). Deduce that there is an isomorphism from
W*(R) to O%(ge) (cf. Algebra, Chap. IX, §9, no. 5).

e) By comparing c) and d), show* that SO™(y) is isomorphic to O (gs).

9 3) Let R be a root system of type E;.

a) Put E = Q(R)/2P(R). This is an Fa-vector space of dimension 6. With
the notation in no. 11, show that the scalar product (z|y) defines a non-
degenerate alternating bilinear form on E.

b) Deduce from a) the existence of an exact sequence
1 {1,-1} - W(R) - Sp(6,F5) — 1.

(Use the fact that Sp(6, F5) is of order 2°.34.5.7.)

¢) Show that the restriction of h to W (R) is an isomorphism from W+ (R)
to Sp(6, F5).

d) Give a second proof of b) by using the quadratic form g7 on the Fa-vector
space Q(R)/2Q(R) induced by }(z|x), as well as the isomorphism

O(gq7) — Sp(6, F2).

9 4) Let R be an irreducible reduced root system in V, (aq, ..., a;) a basis of
R, & the highest root. Put & = nyay + - - - + njoy. We are going to determine
the maximal closed, symmetric subsets of R, distinct from R.

a) Let i € {1,2,...,1}. Let R; be the set of @ € R which are linear combina-
tions of the a; for j # 4. Show that R, is maximal if and only if n; = 1.

4 M. KNESER. has shown that all the “exceptional isomorphisms” between the

finite classical groups can be obtained by using an analogous method. Cf. Uber
die Ausnahme-Isomorphismen zwischen klassischen Gruppen, Hamburger Abh.,
Vol. XXXI (1967), p. 136-140.
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b) Let i+ € {1,2,...,l} and assume that n; > 1. Let S; be the set of roots
!

j=
prime. (If n, = ab with a > 1,b > 1, consider the subset S’ of R consisting of

the roots ijaj with m; = 0 (mod. a), and show that S’ strictly contains
J

S;i.) Show that the roots —&, a; (j # ¢) form a basis of S; (which is of rank
1). Deduce the Dynkin graph of S;.

. M0 with m; = 0 (mod. n;). Show that S; is maximal if and only if n; is

¢) Every maximal closed, symmetric subset of R is transformed by an element
of W(R) into one of the subsets described in a) or b). (Let X be such a subset.
Then ¥ = RN H, where H is a subgroup of Q(R) of finite index (§ 1, Exerc.
6 b)); we can assume that Q(R)/H is cyclic. Then there exists u* € V* such
that X' is the set of a € R such that (u*,a) € Z.

d) List the maximal, closed, symmetric subsets of R for the different types of
irreducible reduced root systems.

5) Let R be a root system, and P’(R) the subgroup of P(R) introduced in
§1, Exerc. 8. Show that P/(R) = P(R) if R is of type A; with [ even, or
B; with I = 0,3 (mod. 4), or D; with [ = 0,1 (mod. 4), or Ga, or Fy, or
Eg, or Eg. Show that P/(R) = Q(R) if R is of type C;, or B; with | = 1,2
(mod. 4), or E7, or A;. If R is of type A; with  odd and > 1, P'(R)/Q(R)
is the unique subgroup of index 2 in the cyclic group P(R)/Q(R). If R is of
type D; with [ = 2,3 (mod. 4), P’(R)/Q(R) is the unique subgroup of order
2 of P(R)/Q(R) stable under A(R).

9 6) Let R be an irreducible reduced root system, (a,...,q;) a basis of R,
p1a1 + - -+ + pay the highest root, ajay + - - - + a;oq the sum of the positive
roots, my, . .., m; the exponents of W(R), g its order, f the connection index.

a) Verify that, in each case,
Upips...ppmime ...my = aqas2. .. q;.
b) Show that
gmims ... my; = faias...aq;.
(Use a) and Prop. 7 of §2, no. 4.)
¢) For any positive root oo = 2_ c;a, let e(a) = 2 ¢;. Calculate in each case
the polynomial ' '

P(t) = > o,

a>0
l
Verify® that P(t) =t _21(1 T R )
=

® For a proof that does not use the classification, see: B. KOSTANT, The principal
three-dimensional subgroup and the Betti numbers of a complex simple Lie group,
Amer. J. of Maths., Vol. LXXXI (1959), p. 973-1032.
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7) Let R be an irreducible reduced root system.

a) Verify that the canonical homomorphism from A(R)/W(R) to the group
of automorphisms of P(R)/Q(R) is injective.

b) Deduce that —1 belongs to W(R) if and only if Q(R) D 2P(R).

8) Let Ry and Ry be two irreducible reduced root systems. Show that if
W(R;) and W(R2) have the same order, R; is isomorphic to Rz or Ry. (Use
the classification.) Does this result still hold without the assumption that R;
is irreducible ?

9) Let R be a root system of rank [, and let p be a prime number dividing
the order of A(R). Show that p < !+ 1. (Reduce to the irreducible case, and
use the classification.)

10) a) Let (W, S) be an irreducible, finite Coxeter system. Put

W(t) = wgwtl(w) (cf. Chap. IV, §1, Exerc. 26.)

Let mi,...,m; be the exponents of W (Chap. V, §6, no. 2). Verify the
formula

l
W(t) = l:[l(1+t+---+tmi)
for small values of [ (use Th. 1 and Exerc. 26 of Chap. IV, § 1)¢.

b) Let R be a reduced, irreducible root system and W (resp. (W,) the Weyl
group (resp. the affine Weyl group) of R, equipped with the Coxeter group
structure determined by the choice of an alcove. Define W(¢) and the expo-
nents m; as above and put

W (t) = wgv £,

Verify the formula

l l )
]_ ]_ t e mg
Wa(t) = W(e) I o = [T 2127 *

—tmi =1 1 —tm

for small values of [ (use Th. 2 and Exerc. 26 of Chap. IV, § 1)".

8 For a proof of this formula that does not use the classification and is valid for all
values of [, see: L. SOLOMON, The orders of the finite Chevalley groups, Journal
of Algebra, Vol. III (1966), p. 376-393.

7 For a proof of this formula that does not use the classification and is valid for all
values of [, see: R. BOTT,An application of the Morse theory to the topology of Lie
groups, Bull. Soc. Math. France, Vol. LXXXIV (1956), p. 251-281; N. IWAHORI
and H. MATSUMOTO, On some Bruhat decomposition and the structure of the
Hecke rings of p-adic Chevalley groups, Publ. Math. Inst. Hautes Et. Sci., no. 25
(1965), p. 5-48.
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9 11) Let (W, S) be a Coxeter system of type Hs (cf. Th. 1).

a) With the notation of Chap. V, §6, no. 2, Proof of Lemma 2, show that
(#',2") = w/5; deduce that the Coxeter number h of W is equal to 10, and
that the exponents of W are 1, 5 and 9.

b) Show, by using a), that Card(W) = 120, and that the number of reflections
in W is 15.

¢) Recover the formula Card(W) = 120 by applying Exerc. 5 of Chap. V, §3.

d) Let As be the alternating group of {1,...,5}; if a,b, ¢,d are distinct ele-
ments of {1,...,5}, denote by (ab) the transposition of a and b, and (ab)(cd)
the product of the transpositions (ab) and (cd). Let

r1 = (14)(23), 72 = (12)(45), rs = (12)(34).

Show that (r172)% = (rer3)® = (r173)? = 1. Deduce the existence of a homo-
morphism f : W — Aj that takes S to {r1,rq,73}; show that f is surjective.

e) Let € : W — {#1} be the homomorphism w — (—1)X*), Show that
(f,e) : W — As x {£1}

is an isomorphism. (Use the fact that the two groups being considered have
the same order.)

9 12) Let (1,4, 7, k) be the canonical basis of the field H of quaternions, by
means of which H is identified with R*. Equip H with the scalar product
%(xﬂ + yZ). Let I" be the multiplicative group of quaternions of norm 1.

a) If a € I', the orthogonal reflection s, in H which transforms a to —a is
the map x — —aZa.

b) Let g =cos £ — i+ (cos3T)j e I'Land r = 1(1+i+j+k) € I'. Let Q be
the set of quaternions obtained from 1, q,r by arbitrary even permutations
and sign changes of the coordinates. Then Q is a subgroup of I" of order 120.

¢) Let W be the subgroup of GL(H) generated by the s, for a € Q. Show
that W leaves Q stable, is finite, irreducible, and non-crystallographic; deduce
that W is of type Hy (cf. Theorem 1).

d) Show that W acts transitively on Q (use Prop. 3 of Chap. IV, §1).

e) Let ag € Q, let V be the vector subspace of H orthogonal to ag, and let
Wy be the stabiliser of ag in W. Show that the restriction of Wy to V is an
irreducible group generated by reflections (Chap. V, §3, no. 3) and that it is
non-crystallographic. Deduce that Wy is a Coxeter group of type Hs.

f) Show that Card(W) = 263252 (use d), €) and Exerc. 11).

g) Show that the Coxeter number of W is equal to 30, and that its exponents
are 1, 11, 19, 29.
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13) Let V be the hyperplane in R? with equation z; +--- + 29 = 0. Let R
be the subset of V consisting of the points

(272,2) _17 _1) _1a _1’ _1a _1)? (—2a _2) —2) 17 1’ 1) 17 1) 1)a
(3a _3707 0) 07 Oa Oa 0’ O)

together with the points obtained from these by permuting the coordinates.
Show that R is a root system in V of type Eg.

14) With the notation in no. 7, show that the automorphism of R which
transforms €; to €3, €2 to €3,...,€; to €141 and €41 to €1 induces a Coxeter
transformation of the system R of type A;.

15) Determine the minuscule weights (§ 1, Exerc. 24) for each type of reduced,
irreducible root system. (One finds the fundamental weights wy, . . .,w; for Ay,
the weight w; for By, the weight w; for C;, the weights w;,w;_1,w; for Dy, the
weights w; and wg for Eg, the weight w7 for E7, and none for Eg, F4 and Gs.)

9 16) Let (W, S) be an irreducible, finite Coxeter system, and let n = Card(S).

a) If (W,S) is not of type Fy4, show that there exists a subset X of S with
n — 1 elements such that (Wx, X) is of type A,_1.

b) Identify W with a subgroup of GL(R®) by means of the canonical rep-
resentation (Chap. V, §4). Show that there exists a basis (e, . ..,e,) of RS
such that, for every permutation ¢ € &,, the automorphism of RS that
transforms e; to (i) for 1 < 7 < n belongs to W (“Burnside’s Theorem”).
(When (W, S) is not of type Fy4, use a); when it is of type F4, remark that
W contains a subgroup of type Dy (cf. no. 9), which reduces the problem to
the preceding case.)

c) Let E be a subgroup of the group of automorphisms of (W,S). Show
that the semi-direct product E.-W of E by W embeds in a canonical way in
GL(R5). Show that the subgroup of GL(RS) thus defined is generated by
reflections, except in the following four cases:

(i) (W, 8S) is of type A,, n > 4; the group E is of order 2.
(i1) (W, S) is of type Dy; the group E is of order 3.
(iii) (W, S) is of type Fy; the group E is of order 2.
(iv) (W,S) is of type Eg; the group E is of order 2.

Show that, in cases (i) and (iv), EW = {£1} x W. Show that, in case (iii),
the group E.W does not leave stable any lattice in RS.

d) Let Wy be a finite subgroup of GL,(R) generated by reflections, and
assume that W, is irreducible and essential. Let G be a finite subgroup of
GL,(R) containing W;. Show that either G is generated by reflections or is
of the form E.W, where E and W are one of the types (i), (ii), (iii), (iv) of ¢).
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(Let W be the group generated by the reflections belonging to G. The group
G permutes the chambers relative to W. Deduce, as in §2, no. 3, that G is
of the form E.W as above.)



HISTORICAL NOTE
(CHAPTERS IV, V AND VI)

(N.B. - The roman numerals in parentheses refer to the bibliography at the
end of this note.)

The groups considered in these chapters appeared in connection with various
questions of Geometry, Analysis and the Theory of Lie groups, sometimes
in the form of permutation groups and sometimes in the form of groups of
displacements in euclidean or hyperbolic geometry, and these various points
of view have been unified only recently.

The historical roots of the theory are substantially earlier than the intro-
duction of the concept of a group: indeed, they are found in the studies of the
“regularity” or “symmetries” of geometrical figures, and notably in the deter-
mination of the regular polygons and polyhedra (which certainly goes back to
the Pythagoreans), which constitutes the crowning achievement of the Ele-
ments of Euclid and one of the most admirable creations of the Greek genius.
Later, notably with the Arab authors of the high Middle Ages, and then
with Kepler, the beginnings of the mathematical theory of regular “tilings”
of the plane or the sphere by (not necessarily regular) congruent polygons
appear; this is undoubtedly related to the various types of decoration de-
vised by the ancient and Arab civilisations (which can properly be consid-
ered as an authentic part of the mathematics developed by these civilisations
(XII)).

Around 1830-1840, studies in crystallography (Hessel, Bravais, Mo6bius)
lead to the consideration of a problem that is actually the determination
of the finite groups of displacements in euclidean space of 3 dimensions, al-
though the authors quoted above do not yet use the language of group theory;
that does not really come into use until about 1860, and it is in the context
of the classification of groups that Jordan, in 1869 (VI), determines the dis-
crete groups of orientation-preserving displacements of R3 (and, more gen-
erally, the closed subgroups of the group of orientation-preserving displace-
ments).

This stream of ideas develops in many directions until the final years of the
19th century. The most significant of these developments are the following:

1. Continuing a trend that appears very early in the theory of finite groups,
“presentations” of finite groups of displacements by generators and relations
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of a simple type are sought. Thus, Hamilton, in 1856 (V), proves that the finite
groups of rotations of euclidean space R® are generated by two generators
S, T satisfying the relations SP = T9 = (ST)3 = 1 for appropriate values of p
and q.

2. Discrete groups of displacements may or may not contain reflections.
In 1852, Mébius essentially determines the finite groups of displacements in
spherical geometry generated by reflections (which is equivalent to the same
problem for finite groups of euclidean displacements of R3); he finds that,
with the exception of the cyclic groups, such a group has as fundamental
domain a spherical triangle with sides of the form 7 /p, /g, 7/r, where p, q,r
are three integers > 1 such that % + % + 1 > 1 () (cf. Chap. V, §4,
Exerc. 4). He also notices that these groups contain all the finite groups of
displacements as subgroups.

3. The latter developments are extended into a new area when the study of
“tilings” of the complex plane or of the half-plane by means of figures bounded
by circular arcs begins, following the work of Riemann and Schwarz on hy-
pergeometric functions and conformal representations; Klein and Poincaré
make it the foundation of the theory of “automorphic functions” and recog-
nise in it (for the case of circular arcs orthogonal to a fixed straight line) a
problem equivalent to the determination of the discrete groups of displace-
ments of the non-euclidean hyperbolic plane (identified with the “Poincaré
half-plane”) (X).

4. The notions of regular polyhedron and of the tiling of R® by such
polyhedra are extended to all the euclidean spaces R™ by Schlafli, in work
that goes back to about 1850, but which was only published much later and
which was ignored for a long time (IV); he determines completely the regular
“polytopes” in each R"™, the group of displacements leaving invariant such a
polytope, and a fundamental domain of this group which, as in the case n = 3
studied by Mobius, is a “chamber” whose projection on the sphere S,,_; is
a spherical simplex. However, he does not take up the inverse problem of
determining the finite groups of displacements generated by reflections in
R"; this problem will only be solved much later, by Goursat for n = 4 (VII),
and for arbitrary n in the work of E. Cartan (IX f)) and Coxeter (XIV), to
which we shall return later.

With the work of Killing and of E. Cartan on Lie groups, a new stream
of ideas begins around 1890 that will develop for a long period without links
to the preceding work. In the study of Killing (VIII) and Cartan (IX a)) of
the structure of complex semisimple Lie algebras, certain linear forms w, on
a “Cartan subalgebra” h of such a Lie algebra g immediately play a basic
role; they are the “roots” relative to §, so called because they appear as
the roots of the characteristic equation det(adg(z) — T) = 0, considered as
functions of x € h. The properties of these “roots” established by Killing and
Cartan amount to the assertion that, in the language of Chap. VI, they form
a “reduced root system” (cf. Chap. VI, §1, no. 4); they then show that the
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classification of the complex semisimple Lie algebras reduces to that of the
associated “root systems”, which itself reduces to the determination of certain
matrices with integer coeflicients (later called “Cartan matrices”; cf. Chap.
VI, §1, no. 5). Killing and Cartan also show the existence, for every root w,,
of an involutive permutation S, of the set of roots®; they use in an essential
way the transformation C = S,,Sq, ... Sq,, the product of the permutations
associated with [ roots forming a fundamental system (a transformation today
called a “Coxeter transformation”); they even extend this permutation to a
linear transformation of the vector space generated by the fundamental roots
wa; (1 < ¢ < 1), and study its eigenvalues ((VIII, II), p. 20; (IX a)), p. 58).
But neither Killing, nor Cartan initially, seem to have thought of considering
the group G’ generated by the S,; and when Cartan, a little later (IX b)),
determines the Galois group G of the characteristic equation

det(adg(z) —T) =0

of a “general element” = € B, he studies it initially without bringing in the
Se; thirty years later, under the influence of H. Weyl, he proves (IX ¢)) that
G’ is a normal subgroup of G and determines in all cases the structure of
the quotient group G/G’ which (for a simple Lie algebra g) is of order 1 or
2, except for type D4y where it is isomorphic to G3; at the same time he
interprets G’ as the group induced by the inner automorphisms of a complex
semisimple Lie algebra leaving fixed a Cartan subalgebra®.

The work of H. Weyl, to which we have just alluded, inaugurated the
geometric interpretation of the group G’ (since called the “Weyl group” of
¢); he had the idea of considering the S, as reflections in the vector space
of linear forms on b, in the same way as Killing and Cartan had done for
the transformation C. It is also in the memoir (XIII) of H. Weyl that the
fundamental domain of the “affine Weyl group” appears (but without the
link to the “Weyl group” G’ being clearly indicated); Weyl uses it to to prove
that the fundamental group of a compact semisimple group is finite, a crucial
point in his proof of the complete reducibility of the linear representations
of a complex semisimple Lie algebra. A little later, E. Cartan completes
the synthesis of the global points of view of H. Weyl, of his own theory of
real or complex semisimple Lie algebras, and of the theory of riemannian
symmetric spaces that he was then constructing. In the memoir (IX d)), he
completes the determination of the fundamental polytopes of the Weyl group
and of the affine Weyl group, and introduces the systems of weights and
radical weights (Chap. VI, §1, no. 9); in (IX e)) he extends this discussion to
symmetric spaces, and notably encounters the first examples of non-reduced
root systems (Chap. VI, §4, no. 1). Finally, the article (IX f)) gives the first

8 The notations wy and S, correspond respectively to the notations o and sq of
Chap. VI, §1.

® The notations G and G’ correspond respectively to the notations A(R) and W(R)
of Chap. VI, §1, no. 1.
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proof that every irreducible finite group generated by reflections in R™ has
a fundamental domain whose projection onto S,,_; is a spherical simplex;
it is also in this work that he proves the uniqueness of the highest root
(for an arbitrary lexicographic ordering on the root system) by geometrical
considerations.

A little later, van der Waerden (XVI), starting from the memoir of H.
Weyl, shows that the classification of the complex semisimple Lie algebras
is equivalent to that of the reduced root systems, which he carries out by
elementary geometric considerations (whereas, with Killing and Cartan, this
classification is a result of complicated calculations with determinants). At
about the same time, Coxeter determines explicitly all the irreducible finite
groups of Euclidean displacements which are generated by reflections (XIV
c)); this completes the memoir (IX d)) of Cartan, which had only deter-
mined the “crystallographic” groups (i.e. those associated to a root system,
or having an embedding in an infinite discrete group of displacements). The
following year (XIV d)), Coxeter shows that the finite groups generated by
reflections are the only finite groups (up to isomorphism) admitting a presen-
tation by generators R; subject to relations of the form (R;R;)™# =1 (m;
integers), hence the name “Coxeter” groups since given to groups (finite or
not) admitting such a presentation.

The first link between the two streams of research that we have described
above seems to have been established by Coxeter (XIV bis), and then by
Witt (XVII). They observe that the irreducible infinite groups of Euclidean
displacements generated by reflections correspond bijectively (up to isomor-
phism) to complex simple Lie algebras. Witt gives a new determination of
discrete groups of this type, and also extends the theorem of Coxeter (XIV
d)) referred to above by characterising the Coxeter groups isomorphic to in-
finite discrete groups of Euclidean displacements. This result, and the fact
that the analogous groups in hyperbolic geometry are also Coxeter groups!®,
has led to the latter groups being studied directly, initially emphasising the
geometric realisation ((XV), (XXV)), and then, following J. Tits (XXV), in
a purely algebraic framework.

Starting with the work of Witt, the theory of semisimple Lie groups and
that of discrete groups generated by reflections continue to interact extremely
fruitfully with each other. In 1941, Stifel (XVIII) remarks that the Weyl
groups are exactly the finite groups generated by reflections that leave a
lattice invariant. Chevalley (XIX a)) and Harish-Chandra (XX a)) give, in
1948-51, a priori proofs of the bijective correspondence between “crystallo-
graphic” groups and complex semisimple Lie algebras; until then, it had only
been possible to verify this correspondence separately for each type of simple
Lie algebra.

0These groups, studied in depth in the case of dimension 2, have so far only been
considered incidentally in dimensions > 3.
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On the other hand, it is observed around 1950 that the polynomials in-
variant under the Weyl group play an important role in two areas, the theory
of infinite-dimensional linear representations (XX a)) and in the topology of
Lie groups. Coxeter (XIV f)) again takes up the study of the transformation
C formed by taking the product of the fundamental reflections of a finite
group W generated by reflections. He observes (by means of a separate ex-
amination of each type) that the algebra of polynomials invariant under W
is generated by algebraically independent elements whose degrees are related
in a simple way to the eigenvalues of C. A priori proofs of these results were
given by Chevalley (XIX b)) in the first area, and by Coleman (XXIII) and
Steinberg (XXIV) in the second.

With the work of A. Borel on linear algebraic groups (XXII), new devel-
opments begin which are to lead to a notable enlargement of the theory of
Lie groups. A. Borel emphasises the importance of the maximal connected
soluble subgroups (since called “Borel subgroups”) of a Lie group, and makes
them the principal tool for transporting a large part of the classical theory to
algebraic groups over an algebraically closed field (but without obtaining a
classification of the simple algebraic groups!!). The Borel subgroups (in the
case of real or complex classical groups) had already arisen some years earlier
in the work of Gelfand and Neumark on inifinite-dimensional representations;
and in 1954, F. Bruhat had discovered the remarkable fact that, for the clas-
sical simple groups, the decomposition of the group into double cosets over a
Borel subgroup is indexed in a canonical way by the Weyl group (XXI). This
result was subsequently extended to all real and complex semisimple groups
by Harish-Chandra (XX b)). On the other hand, in 1955, Chevalley (XIX c))
had succeeded in associating to every complex semisimple Lie algebra g and
to every commutative field k, a group of matrices with coefficients in k hav-
ing a Bruhat decomposition; and he used this last fact to show, with a small
number of exceptions, that the group thus defined was simple (in the sense of
the theory of abstract groups). He thus “explained” the coincidence, already
noticed by Jordan and Lie, between the simple Lie groups (in the sense of
the theory of Lie groups) of type A,B,C,D and the classical simple groups
defined in a purely algebraic manner over an arbitrary field (a coincidence
which had until then only been extended to the exceptional types G2 and Fy
by Dickson (XI b) and ¢))). In particular, by taking a finite field k, the con-
struction of Chevalley provided, for each type of complex simple Lie algebra,
a family of finite simple groups, containing a large number of the then known
finite simple groups as well as three new series (corresponding to the simple
Lie algebras of types F4, E7 and Eg). A little later, by various methods, and
using modifications of those of Chevalley, several authors (Herzig, Suzuki,

11 An algebraic group of dimension > 0 is said to be simple (in the sense of algebraic
geometry) if it does not contain any normal algebraic subgroup of dimension > 0
other than itself. It is said to be semisimple if it is isogenous to a product of
simple non-abelian groups.
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Ree, Steinberg and Tits) showed on the one hand that the other finite simple
groups known at the time could be obtained in an analogous way, with the
exception of the alternating groups and the Mathieu groups, and on the other
hand constructed other series of new finite simple groups (cf. (XXIX)).

At about the same time, Chevalley (XIX d)) again took up the study of
linear algebraic groups and showed, using the technique of Bruhat decom-
positions together with a key result on the normaliser of a Borel subgroup,
that the theory of semisimple linear algebraic groups over an algebraically
closed field k of arbitrary characteristic'? leads to essentially the same types
as in the Killing-Cartan classification for k = C. After this, J. Tits (XXV aq)
and b)), analysing Chevalley’s methods, is led to an axiomatised version of
the Bruhat decomposition (the “BN-pairs”), in a remarkably versatile form
which involves only the group structure; it is this notion that is now known
as a “Tits system”. All the simple groups (with the various meanings of the
term) we have discussed above are canonically equipped with Tits systems,
and Tits himself (XXV ¢)) has proved that the existence of such a system
in an abstract group G, together with a few additional properties from pure
group theory, allows one to prove that G is simple, a theorem which covers
the majority of the proofs given until then for these groups (cf. Chap. IV, §2,
no. 6). On the other hand, in collaboration with A. Borel, he has generalised
the results of Chevalley in (XIX d)) by showing the existence of Tits systems
in the group of rational points of a semisimple linear algebraic group over an
arbitrary field (XXVII).

All the Tits systems encountered in these questions have a finite Weyl
group. Another category of examples was discovered by Iwahori and Mat-
sumoto (XXVI); they have shown that if, in Chevalley’s construction of (XIX
c)), k is a p-adic field, the group obtained has a Tits system whose Weyl group
is the affine Weyl group of the complex semisimple Lie algebra with which
one started. This result has been extended by Bruhat and Tits (XXVIII) to
all semisimple algebraic groups over a local field.

12The existence of numerous “pathological” simple Lie algebras over a field of char-
acteristic p > 0 could have led some to doubt the universal character of the
Killing-Cartan classification.
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Adjoining chambers: IV, 1, Exercise 15.

Affine (Weyl group): VI, 2, 1.

Alcove: VI, 2, 1.

Angle between two roots: VI, 1, 2.

Anti-invariant: V, 5, 4 and VI, 3, 3.

Apartment: IV, 1, Exercise 15.

Arrow: IV, Appendix, 1.

Associated (bilinear form — to a Coxeter system): V, 4, 1.
Basis of a root system: VI, 1, 5.

Building: IV, 1, Exercise 15.

Canonical bilinear form: VI, 1, 12.

Canonical Cartan matrix: VI, 1, 5.

Cartan matrix: VI, 1, 5.

Chain: IV, Appendix, 3.

Chain of roots: VI, 1, 3.

Chamber: V, 1,3 and V, 3, 1.

Chamber of a building: IV, 1, Exercise 15.
Characteristic degrees: V, 5, 1.

Circuit: IV, Appendix, 3.

Closed set of roots: VI, 1, 7.

Compact hyperbolic (Coxeter group of — type): V, 4, Exercise 12.
Components (connected — of a graph): IV, Appendix, 2.
Components (irreducible — of a Coxeter system): IV, 1, 9.
Conjugate elements of a group: IV, 1, 3.

Connected graph: IV, Appendix, 2.

Connection index: VI, 1, 9.

Contragredient representation: V, 4, 4.

Cosets (double): IV, 2, 1.

Coxeter graph: IV, 1, 9.

Coxeter group: IV, 1, 3.

Coxeter matrix: IV, 1, 9.
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Coxeter number: V, 6, 1 and VI, 1, 11.
Coxeter system: IV, 1, 3.

Coxeter transformation: V, 6, 1 and VI, 1, 11.
Crystallographic group: VI, 2, 5.

Dihedral group: 1V, 1, 2.

Dominant weight: VI, 1, 10.

Dynkin graph: VI, 4, 2.

Essential group generated by reflections: V, 3, 7.
Exchange condition: IV, 1, 5.

Exponents of a finite Coxeter group: V, 6, 2.
Face of a chamber: V, 1, 4.

Facet: V, 1, 2.

Fundamental weight: VI, 1, 10.

Forest: IV, Appendix, 3.

Gallery: IV, 1, Exercise 15.

Graph: IV, Appendix, 1.

Graph (completed Dynkin): VI, 4, 3.

Graph (Coxeter): IV, 1, 9.

Graph (Dynkin): VI, 4, 2.

Half-space: V, 1, 1.

Hecke algebra: V, 2, Exercise 22.

Highest root: VI, 1, 8.

Hyperbolic (Coxeter group of — type): V, 4, Exercise 12.
Hyperplane of a pseudo-reflection: V, 2, 1.
Indivisible root: VI, 1, 3.

Inverse system of roots: VI, 1, 1.

Irreducible group generated by reflections: V, 3, 7.
Irreducible Coxeter system: IV, 1, 9.
Irreducible root system: VI, 1, 2.

Joined vertices of a graph: IV, Appendix, 1.
Length of a path in a graph: IV, Appendix, 2.
Length of an element of a group: IV, 1, 1.
Length of a root: VI, 1, 2.

Minuscule weight: VI, 1, Exercise 24.
Normaliser: IV, 2, 6.

Normed graph: VI, 4, 2.

Opposed facets: 1V, 1, Exercise 18.

Path: IV, Appendix, 2.

Poincaré series: V, 5, 1.

Polynomial (graded — algebra): V, 5, 1.
Positive root: VI, 1, 6.

Presentation of a group: IV, 1, 3.
Pseudo-reflection: V, 2, 1.

Radical weights: VI, 1, 9.
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Ramification point of a graph: IV, Appendix, 1.
Rank of a root system: VI, 1, 1.

Reduced decomposition: IV, 1, 1.

Reduced root system: VI, 1, 4.

Reflection: V, 2, 2.

Representation associated to a Cartan matrix: V, 4, 3.
Restricted direct product: IV, 1, 9.

Root system: VI, 1, 1.

Saturated set of weights: VI, 1, Exercise 23.
Sign of an element of a Coxeter group: IV, 1, 3.
Simply-transitive group action: IV, 2, Exercise 3.
Simplex: V, 1, 6.

Simplicial cone: V, 1, 6.

Spacious building: IV, 1, Exercise 24.

Special point: V, 3, 10.

Strongly orthogonal roots: VI, 1, 3.

Structured building: IV, 1, Exercise 24.
Subgraph: IV, Appendix, 1.

Support of a facet: V, 1, 2.

Terminal vertex of a graph: IV, Appendix, 1.
Tits subgroup: IV, 2, Exercise 3.

Tits’ theorem: V, 4, 4.

Tree: IV, Appendix, 3.

Vector of a pseudo-reflection: V, 2, 1.

Vertex of a graph: IV, Appendix, 1.

Wall of a chamber: V, 1, 4.

Weights: VI, 1, 9.

Weyl group of a root system: VI, 1, 1.

Weyl group of a Tits system: IV, 2, 1.






PLATE I

M

(I1)

(11T
1)

(VI)

SYSTEMS OF TYPE A; (I > 1)

V is the hyperplane of E = R consisting of the points the sum of
whose coordinates is zero.

Roots: g; —€; (1 #4,1<i<1+1,1<j<I+1).

Number of roots: n = I(l + 1).

Basis: a3 = €1 —€9,00 = €2 —€3,...,00 = € — €141
Positive roots: ¢; —e; = ) o (1<i<j<l+1).
i= )
i<k<j

Coxeter number: h =1+ 1.

Highest root: @ =¢; — €41 =1 +as+ -+ ap = w; +wy.
Completed Dynkin graph (I > 2):

%y %2 X1 %

For | = 1, the Coxeter graph of the affine Weyl group is

o
oO———0

R =R,
(zly) 2
¢ = = l ]. .
Fundamental weights:
141
wi =€+ +¢& — l-l-_1j=1€j

1 . .
= l-l-—l[(l —i+ 1) (g +2a2+ -+ (G —1)a;—1)

+i((l =14+ 1o + (=) + - + )]
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(VII)

PLATE I

Sum of the positive roots:

20=ler+(1—2)ea+(l—4ez+---—(1—2)e; — le
=log +2(l—Nag+---+i(l —i+Da; + -+ + lay.

(VII) Q(R): the set of vectors whose coordinates are integers with sum zero.

P(R): generated by Q(R) and &1 — (I + 1) (e1 +ea + - + £141).
P(R)/Q(R) is isomorphic to Z/(l + 1)Z.

Connection index: [ + 1.

Exponents: 1,2,...,1.

W(R) = 641, identified with the group of permutations of the ;.
Order of W(R): (I + 1)!

I=1: AR)=W(R); wo = —1.

1>2: A(R)=W(R) x {1, -1} and wp transforms a; to —a41_;.
The group P(R")/Q(R") is cyclic of order (I + 1); it acts on the com-
pleted Dynkin graph by circular permutations. If [ > 2, the unique

non-identity element of A(R)/W(R) acts on P(R)/Q(R) by the auto-
morphism z — —zx.

(XIII) Cartan matrix (I x [):

2 -1 0 0 0 O
-1 2 -1 0 0 O
o -1 2 -1 0 0

0 0



PLATE II

(m

(1)
(1v)

SYSTEMS OF TYPE B; (I > 2)

V=E=R.
Roots: +e;, (1 <1 <), te; 65 (1 <i<j<).
Number of roots: n = 2I2.

Basis: Q] = €1 — €2, = €9 —E3,...,0_1 =E&|—-1 — €, = €&].
Positive roots:

& = > ar (1<i<l),
i<kl

ei—ejzigk;jak (1<i<j<gl),

eitej= 2 oap+2 2 o (1<i<j<l),
i<k<j i<k<l

Coxeter number: h = 2I.

Highest root:
a=¢1+e=0a1+2as+ 203+ -+ 204.

We have & = 2w if | =2, & = wy if | > 3.
Completed Dynkin graph:

for | = 2: ay  aj

!

for 1 > 3: ‘o —o=r=0
az a3 o) %

R’ is the set of vectors
+2e¢; (1<i<), e, +¢; 1<i<y <)

(z]y)
4-2

Pr(z,y) = Y(R) = (I +1)(4l -2).
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(VI) Fundamental weights:

wizerteat o te (1<i<l)
=01+ 2+ -+ (= Dogo1 + il + i+ + o)

1
wl=—2-(€1 +82+"'+8l)

1
=5l +20p 4 +la).

(VII) Sum of the positive roots:

20=(2l—1)es + (21— 3)ea + -+ -+ 3e1_1 + &
=2 - Day +22 - 2ag + - +i(2l —8)a; + -+ - + oy

!
(VI) Q(R) = @iy Zei, P(R) = By Zei + Z(5 2 0)-
1=
P(R)/Q(R) is isomorphic to Z/2Z, generated by the image of w;.
Connection index: 2.
(IX) Exponents: 1,3,5,...,2] — 1.
(X)  W(R) is the semi-direct product of the group &;, acting by permu-
tations of the ¢;, by the group (Z/2Z)!, acting by &; — (£1);&;. Its
order is 24.1!
(XI) A(R)=W(R); wo = —1.
(XII) The unique non-trivial element of P(R")/Q(R") defines the unique
non-trivial automorphism of the completed Dynkin graph.
(XIII) Cartan matrix (I x I):

2 -1 0 O 0 O
-1 2 -1 0 0 O
0o -1 2 -1 0 O
0O 0 -1 2 0 O
0o 0 0 0 2 =2



PLATE III

@

(IT)

(I1I)
1v)

(VI)

SYSTEMS OF TYPE C, (I > 2)

V=E=R.
Roots: £2¢;, (1 < <), 2e;+¢; (1 <i<j<I).
Number of roots: n = 2I2.

Basis: ay = €1 — €9, = €3 —€3,...,0q_1 = €11 — €1, 0y = 2€].
Positive roots:

£, =€;—€; = Y o« 1<i< g <),

i 7 ihs k ( J )

€ +ée;= E ap + 2 E ak+al (1 ’L<j<l),
i<k<j i<k

2= 2 op+oy (1<i<l).
i<k<!

Coxeter number: A = 21.
Highest root:

a =2 =201+ 202+ -+ 20y_1 + og.
Completed Dynkin graph:

@y ay A2 )

R is the set of vectors +e;, *e; +¢;.

Or(z,y) = %, ¥(R) = (1 +1)(4l - 2).

Fundamental weights:

w; =€1 +¢&9+- +€@(1 1 < l)
=01 +202+ -+ (i — a1

. 1
+ila; o1+t ogor + 5(1,).
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(VII) Sum of the positive roots:

20 =2lgy + (21 — 2)ea + - - - + 4e1_1 + 2¢
= 2oy +2(2 — Dag + - +3(2 — i + Va; + - -

1
e+ -1+ 2)ag-g + El(l + Doy.

(VIII) Q(R): the set of points whose coordinates are integers with even sum.
P(R‘) = @i:l Zsi'

P(R)/Q(R) is isomorphic to Z/2Z, generated by the image of w;.
Connection index: 2.

(IX) Exponents: 1,3,5,...,20 — 1.

(X)  W(R) is the semi-direct product of the group &,, acting by permu-
tations of the ¢;, by the group (Z/2Z)!, acting by &; — (£1);¢;. Its
order is 2L.1!

(XI) AR)=WR); wo = —1.

(XII) The unique non-trivial element of P(R")/Q(R") defines the unique
non-trivial automorphism of the completed Dynkin graph.

(XIII) Cartan matrix (I x 1):

2 -1 0 O 0 O
-1 2 -1 0 0 0
0o -1 2 -1 0 0
0 0 -1 2 0 0
0o 0 0 O 2 -1
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(III)
1v)

SYSTEMS OF TYPE D; (I > 3)

V=E=R.
Roots: +e; £¢; (1 <i<j<1); (e;) the canonical basis of R'.
Number of roots: n = 2[(I — 1).
Basis: a3 = €1 —€3,a0 = €3 —€3,...,01_1 = €11 — €, 0y = €j_1 + €.
Positive roots:

gi—¢gj = > o 1<i<j<g),

i<k<j
Eite = Z o +aoy (1<i<l),

i<k<l—2
g tej= > ag + 2 > opta1+a 1<i<j<l).
i<k<j j<k<l—1

Coxeter number: A = 2] — 2.
Highest root:

a=¢€1+e=0a;+2as+ -+ 20,0+ oy_1 + 0.

We have @ =wg + w3 if | =3 and & = wy if | > 4.
Completed Dynkin graph (I > 4):

o

axo—o— cee —o———-o//g‘_l

o/“: ay L7289 ‘11&0
x

R

I
&
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(VD)

(VII)

PLATE IV

Fundamental weights:
w; =€1+€x+--+¢€; (1 <z<l—2)
=ar+20+ -+ (- Dogo1 +i(on +aip1 + - + o)

1.
+ 51(011_1 + ap)

1
wi—1 = 5(61 +eat - teaotear—el)
1 1 1
= 5(0&1 +2a0+ -+ (1 —2)oy_2 + 5lal_1 + E(l - 2)ay)
1
w==(e1+e2+ - +e—2te_1+e)
2
1 1 1
= 5(041 +2a+- -+ (1 —2)oy_2 + §(l —2)ay-1 + §lal).
Sum of the positive roots:
2p = 2(l - 1)61 + 2(l - 2)62 + -4+ 29

i(i +

1)
=it

=2(1— oy +2(21 — 3)ag + -+ + 2(il —
(-1
LW

2

(ou—-1+ o).

(VIII) Q(R): the set of points whose coordinates are integers with even sum.

(IX)

(X)

l l
PR) =P Ze: + Z(% Z_)l &)
i=1 -

1 odd: P(R)/Q(R) is isomorphic to Z/4Z, generated by the image of
wy; we have wy = 2w; and w;—; = 3w; mod. Q(R).

I even: P(R)/Q(R) is isomorphic to (Z/2Z) x (Z/2Z); the three ele-
ments of order 2 are the images of wy,w;—1 and wj.

Connection index: 4.

Exponents: 1,3,5,...,2l — 5,2l — 3,1 — 1 (the last appearing twice if
l is even and once if [ is odd).

W(R) is the semi-direct product of the group &;, acting by permuta-
tions of the &;, by the group (Z/2Z)'"!, acting by &; — (£1);&; with
l:[(:l:l)i = 1. Its order is 2!~1.0!

1 # 4: A(R)/W(R) = Z/2Z acting on the Dynkin graph by transposi-
tion of the nodes a;_; and oy.

Il =4: A(R)/W(R) = B3, acting on the Dynkin graph by permuting
the nodes a1, a3 and ay.

wg = —1if [ is even; wg = —e¢ if | is odd, where € is the automorphism
that interchanges a;_1 and o; and leaves the other o; fixed.
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(XII) Actionof P(R")/Q(R") = P(R)/Q(R) on the completed Dynkin graph:
l odd: w; transforms g into a1, o into aq, oy into ay—1 and o1 into
0yp; it interchanges o; and a;_j for 2 < j <1 —2.
l even: w; (resp. w;—1) interchanges op and «; (resp. ap and a;_1),
a; and o;_; (resp. a; and ;) and interchanges «; and «o;—; for
2<j<l—2.

(XIII) Cartan matrix (I x {):

2 -1 0 0 0 O
-1 2 0 0 0 O
0 O 2 -1 0 O
0 O -1 2 -1 -1
0 0 0 -1 2 0
0 O 0 -1 0 2






PLATE V

SYSTEM OF TYPE Eg

@ V is the subspace of E = R® consisting of the points whose coordinates
(&) are such that & = &7 = —&s.
Roots: te; +¢; (1 <1< j<5),

1 5 . 5
:|:§(€8 —e7—¢€6+ 4:(—1)”(‘)6i) with 2:1 v(i) even.
1= 1=

Number of roots: n = 72.
(II)  Basis: a1 = L(e1+es)—1(e2t+estestes+egter), ap =e1+e2,03 =
€2 —E€1,04 = €3 —€2,Q5 = E&4 —E€3,06 = €5 — 4.
Positive roots: +e; +¢; (1 <i<j <5),
1 5 . 5
5(58 —e7—€6 + 'Zl(—l)"(')ei) with 2. v(7) even.
1= 1

Positive roots with at least one coefficient > 2 (we denote the root
aoy + bag + caz + day + eas + fag) by “‘Zef)”:

01210 11210 01211 12210 11211 01221
1 1 1 1 1 1

12211 11221 12221 12321 12321
1 1 1 1 2
(IIT)  Coxeter number: h = 12.
(IV)  Highest root:

|
a= 5(61 + &2 +63+64+€5—€6—€7+€8)

= a1 + 209 + 203 + 34 + 205 + ag = ws.

13The other positive roots can be obtained by applying Cor. 3 of Prop. 19 of Chap.
VI, §1, no. 6.
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V)

(V)

PLATE V

Completed Dynkin graph:

O— O O O
-3} as ay as - 73

o)

R=R,
Pr(z,y) = (z[y)/24, ~(R) =144

Fundamental weights:
2 1
wy = 5(63 — €7 — 66) = 5(401 + 3az + 5az + 6ag + 4as + 2a5)

1
Wy = 5(61 +€2+€3+€4+€5—€6—€7+€8)

=qa1 + 202+ 203 + 304 + 205 + g = &

5 1
w3z = 6(68 —67—66)4-5(—61 +62+63+E4+€5)

1
= 5(501 + 6ag + 10a3 + 124 + 8as + 4ag)

Wy =€3+€E4+6E5—€g—€E7+Eg
= 2a1 + 3ag + 4as + 6ay + 4as + 204

2
w5=§(68——€7—66)+64+65
1
= §(4a1 + 6az + 8az + 12a4 + 10a5 + 5ag)
1
we = 5(58 —€7—€¢)+€s

1
= 3(2011 + 3as + 4as + 6ay + Sas + 4016).

(VII) Sum of the positive roots:

2p = 2(eq + 2e3 + 3e4 + 4es + 4(es — 7 — €6))
= 2(8ay + 11ag + 15a3 + 21ay + 1505 + 80[6).

(VIII) P(R)/Q(R) is isomorphic to Z/3Z.

(IX)
(X)
(XI)

Connection index: 3.
Exponents: 1,4,5,7,8,11.
Order of W(R): 27.34.5.

A(R) = W(R) x {1,—1}; wo transforms oy, as, a3, ag, as, g, respec-
tively, into —ag, —ag, —as, —a4, —Q3, —Q1.
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(XII) The non-identity element of A(R)/W(R) defines the automorphism
z — —z of P(R)/Q(R).
The group of automorphisms of the completed Dynkin diagram is
isomorphic to Gg; its elements of order 3 are induced by the two non-
trivial elements of P(R”)/Q(R").

(XII) Cartan matrix:

2 0 -1 0 O
0o 2 0 -1 0
-1 0 2 -1 0
0o -1 -1 2 -1

0o o 0 -1 2 -1
0o o 0 0 -1 2






PLATE VI

SYSTEM OF TYPE E;

§8) V is the hyperplane in E = R® orthogonal to &7 + 5.
Roots: +e; +¢; (1 <1< j<6), £(e7 —€3),

1 6 . 8
+-(e7 —eg + 2 (—1)"De;)  with 2o v(i) odd.
2 i=1 i=1

Number of roots: n = 126.

(I) Basis:

1 1
o = 5(61 +Eg) - 5(52 +€3+64+E5+86+67),

Qp =€)+ €2, @3 = €2 — €1, Qg = €3 — €2, A5 = €4 — €3,
Qg = €5 — €4, 7 = E6 — E5.

Positive roots:

te;+¢e; (1<i<j<6), —e7+es,

1 6 A 6
5(—er +est Zl(—l)”(’)ei) with Zl v(i) odd.
= 1=
Positive roots containing a7 and having at least one coefficient > 2
(we denote the root aa; + bag + caz + day + eas + fag + gar by
acdefg)14.
b :
012111 112111 012211 122111 112211
1 1 1 1 1
012221 122211 112221 122221 123211
1 1 1 1 1
123221 123211 123321 123221 123321
1 2 1 2 2
14The positive roots not containing a7 come from Eg. The positive roots all of whose

coefficients are < 1 can be obtained by applying Cor. 3 of Prop. 19 of Chap. VI,
§1, no. 6.
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124321 134321 234321
2 2 2
(II1)  Coxeter number: h = 18.
(IV) Highest root:

a=¢€g— €7 =201 + 200 + 3az + 4oy + 3as + 206 + a7 = wy.

Completed Dynkin graph:

O O—- O . O O 0

o o3 ®, o (A oy
O,

(V) R =R
Pr(z,y) = (z|y)/36, ~(R) =2%3%

(VI) Fundamental weights:
w1 = €8 — &7 = 201 + 205 + 3az + day + 3as + 206 + a7

1
wy = 5(61 + €9+ €3+ €4 + €5+ €6 — 267 + 2¢e3)
1
= 5(4011 + Tap + 8as + 12a4 + 9as + 8as + 3ar)

1
w3=§(~—61 + &9 +63+E4+65+66—3€7—|—368)

= 3a; + 4as + 6ag + 8ay + 6as + 4ag + 207
Wy =€3+E4+E5+E€¢ +2(63 —67)
= 4aq + 6ag + 8az + 1204 + a5 + 6ag + 37

3
ws =¢€4+€5+ €6+ 5(68 —€7)
1
= 5(6a1 + 9as + 12a3 + 18ay + 15a5 + 10a6 + 5arr)

we = €5+ €6 — €7+ Eg
= 2a1 + 3ag + 4as + 6ay + Sas + 4ag + 207

wy = €6 + 5(63 - 67)

1
= 5(2a1 + 3az + 4as + 6ay + bas + dag + 3ar).
(VII) Sum of the positive roots:

2p = 2e9 + 4e3 + 6e4 + 8¢5 + 106 — 17e7 + 17esg
= 3403 + 49a9 + 66as + 9604 + 755 + 5206 + 277,



PLATE VI 281

(VIII) P(R)/Q(R) is isomorphic to Z/27Z.
Connection index: 2.

(IX) Exponents: 1,5,7,9,11,13,17.

(X)  Order of W(R): 210.3%.5.7.

(XI) A(R) = W(R), wo = —1.

(XII) P(R")/Q(R") has only one non-identity element; it defines the unique
non-trivial automorphism of the Dynkin graph.

(XIII) Cartan matrix:

(=T e R an I e B @)






PLATE VII

@

(ID)

SYSTEM OF TYPE Eg

V =E =R&.

8 8

Roots: +¢&; +¢; (i < j), 3 zl(—l)”(i)ei with 21 v(i) even.
1= 1=

Number of roots: n = 240.

Basis:

1 1
o = 5(81 +€3) — 5(62+€3+E4+€5+66+€7),

Qg =€1+€2, Qg =€2 —€1, Qg =E3 — €2, Q5 = E4 — €3,

Qg = €5 — €4, Oy = Eg — €5, Qg = €7 — E6-

Positive roots:

1 7 . 7
te; +¢5 (1 <), 5(63 + igl(—l)”(‘)ei) with q;lu(i) even.

Positive roots containing ag and having at least one coefficient > 2(we

denote the root aa; + bas + caz + day + eas + fag + gar + hag by
acdefgh)ls.
b :

0121111 0122111 1121111 0122211 1221111

1 1 1 1 1
1122111 1222111 1122211 0122221 1232111
1 1 1 1 1
1222211 1122221 1232211 1232211 1222221
1 1 2 1 1
1232211 1233211 1232221 1233211 1232221
2 1 1 2 2

15The positive roots not containing ag come from E7. The positive roots all of whose
coefficients are < 1 can be obtained by applying Cor. 3 of Prop. 19 of Chap. VI,
§1, no. 6.
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1233321 1243211 1233221 1233321 1343211

1 2 2 1 2
1243221 1233321 2343211 1343221 1243321
2 2 2 2 2
2343221 1343321 1244321 2343321 1344321

2 2 2 2 2
1354321 2344321 1354321 2354321 2354321
2 2 3 2 3
2454321 2454321 2464321 2465321 2465421
2 3 3 3 3
2465431 2465432
3 3

(IIT)  Coxeter number: h = 30.
(IV) Highest root:

=¢e7 +eg =201 + 3ag + 4as + 6ay + Sas + 4dag + 3ar + 2as

= w8
Completed Dynkin graph is:

o o o o o o
a, ay 1114 o o oy ag

o

(V) R =R
Pr(z,y) = (z[y)/60, ¥(R) = 900.

(VI) Fundamental weights:

w1 = 2eg = 4y + Sag + Tag + 10ay + 8as + 6ag + 4ar + 2as
= %(51 +eg + €3+ €4+ €5+ €6 + €7 + Deg)
= bap + 8ag + 10a3 + 15a4 + 12a5 + 9a6 + 67 + 3ag

w2

1
w3z = 5(—614—62 +e3+eqgtes+egt+er+ Tes)

= Tay + 10as + 14as + 20a4 + 16as + 1206 + 8ar + 4ag
Wy = €3+ €4+ €5+ €6+ €7 + beg
= 10a1 + 1509 + 203 + 300y + 245 + 18ag + 127 + 6ag
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ws = €4 + €5 + €6 + €7 + 4es
= 8ay + 1209 + 163 + 24 + 20as + 1506 + 10a7 + dag
we = €5 + €6 + €7 + 3eg
= 6o + 9o + 12ai3 + 18y + 15a5 + 1206 + 87 + 4ag
wr =€¢ + €7 + 263
= 4oy + 6as + 8as + 12a4 + 10as + 8ag + 6y 4 3ag
wg = €7 + €8
= 5a3 + 8ag + 10as + 15y + 12a5 + 9as + 6a7 + 3as = a.

(VII) Sum of the positive roots:

2p=2(gq + 2e3 + 3e4 + 4e5 + Seg + be7 + 23¢3)
=2(46c; + 68az + 91 + 13504 + 1105 + 846 + 57a7 + 29a).

(VIII) Q(R): the set of points with coordinates & such that 2§ € Z,
8
&i-¢& €L, Zlg,-mz.
1=

Connection index: 1.
(IX) Exponents: 1,7,11,13,17,19, 23, 29.
(X)  Order of W(R): 24.35.52.7.
(XI) and (XII) A(R) = W(R), wo = —1.
(XIII) Cartan matrix:

2 0 -1 0 0 O 0 ©O
o 2 0 -1 0 0 O O
-1 0 2 -1 0 0 0 O
0o -1 -1 2 -1 0 0 O
o o 0o -1 2 -1 0 O
o o o O -1 2 -1 0
0o o o O o0 -1 2 -1
0o 0 0 ©0






PLATE VIII

(I1)

(I1I)
(1v)

SYSTEM OF TYPE F4

V=E=R"
Roots:
te;, (1<i<4), =e+e (1<i<j<A4),
1
5(:&61:':62 :|:E3 :|:E4).
Number of roots: n = 48.
Basis:
1
Q] =€ — €3, Qg = €3 — €4, O3 = €4, Q4 = 5(61 — €3 — €3 — €4).

Positive roots:

E; (1<1,<4), Ei:tt;‘j (1<'L<j<4), (81:|:62:|:€3:|:€4).

N -

Positive roots having at least one coefficient > 2 (we denote the root
aa; + bay + caz + day by abed)®:
0120 1120 0121 1220 1121 0122 1221 1122
1231 1222 1232 1242 1342 2342
Number of roots: h = 12.

Highest root: & = €1 + €2 = 2a;1 + 3as + 4as + 2a4 = ws.
Completed Dynkin graph:

(o o)
ay ay &3 a4

18The other positive roots can be obtained by applying Cor. 3 of Prop. 19 of Chap.
VI, §1, no. 6.
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(V) R the set of vectors +2¢;,+e; £ e, +e1 Lo €3 L ey,

Or(z,y) = %, v(R) = 2.3%.

(VI) Fundamental weights:
w1 =€1+ €2 =201 + 3as + 4oz + 204
wo = 2€7 + €9 + €3 = 3a;1 + 6y + 8az + 4oy
w3 = %(361 +eot+e3+e4) =203 + 4as + 6az + 3ay
wg = €1 = a1 + 209 + 3asz + 2ay4.
(VII) Sum of the positive roots:

2p = 1le; + 5eq + 3e3 + €4 = 161 + 302 + 423 + 2204.

4
(VI) Q(R) = @iy Zei + Z(5 X e0).
P(R) = Q(R).
Connection index: 1.
(IX) Exponents: 1,5,7,11.
(X) and (XI) A(R) = W(R), wo = —1.

(XII) Cartan matrix:
2 -1 0 O



PLATE IX

(In)

(II1)
v)

V)

(V)

SYSTEM OF TYPE G,

V is the hyperplane in E = R? with equation & + & + &3 = 0.
Roots:
+(e; —€2), (g1 —e3), *(e2—e3), (261 —e2—e€3),
+ (260 — €1 —€3), (263 — €1 —€2).

Number of roots: n = 12.

Basis: a; = €1 — €3, a0 = —2¢€1 + €2 + €3.
Positive roots: ai, a1 + ag, 2a; + az, 3a; + ag, 301 + 2as.

Coxeter number: h = 6.

Highest root: & = —e1 — €2 + 263 = 31 + 202 = wa.
Completed Dynkin graph:
% o2
R’ is the set of vectors
+ay, (a1 +a2), £ (201+az), :I:%az,
:l:%(3a1 +az), = %(3(11 + 2a).

%@M=%T,%m=%

Fundamental weights:

w1 =201 +ag, we =301+ 202 =a.

(VII) Sum of the positive roots:

2p = 2(5a1 + 3az).



290 PLATE IX

(Vi) P(R) = Q(R).
Connection index: 1.
(IX) Exponents: 1, 5.
(X)  W(R): the dihedral group of order 12.
(XI) and (XII): A(R) = W(R), wo = —1.
(XIII) Cartan matrix:
(5 7)
-3 2



PLATE X

IRREDUCIBLE SYSTEMS OF RANK 2

L

The first three diagrams above represent the root systems R of type Az, B2
and Gg. The shaded region represents the chamber C corresponding to the
basis (a1, a2). The line (z|3) = 1, where 8 denotes the highest root of the
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inverse system R, is shown dotted, and the doubly shaded region represents
the alcove of R” with vertex 0 contained in C.

The last diagram represents the unique irreducible non-reduced root sys-
tem of rank 2.



SUMMARY OF THE PRINCIPAL
PROPERTIES OF ROOT SYSTEMS

(In this summary we restrict ourselves to the case of reduced root systems
and work over the field of real numbers.)

1) Let V be a real vector space. A reduced root system in V is a subset
R of V with the following properties:

(i) R is finite and generates V.
(ii) For all @ € R, there exists ™ € V* such that (a,a”) = 2, and such
that the map
Saixz— z— (z,0 )

from V to V transforms R to R.

(iii) For all « € R, a”(R) C Z.

(iv) If & € R, then 2a: ¢ R.

In view of (i), the element «”, whose existence is guaranteed by (ii), is
unique; thus (iii) makes sense. The map s, is a reflection that leaves fixed
the points of L, = Ker(a") and transforms a to —a.

The elements of R are called roots. The dimension of V is called the rank
of the root system.

2) The group of automorphisms of V that leave R stable is denoted by
A(R). The s, (o € R) generate a subgroup W(R) of A(R), called the Weyl
group of R; this subgroup is normal in A(R). The only reflections belonging
to W(R) are the s,.

3) The set R™ of & (for a € R) is a reduced root system in V*, called the
inverse system of R. The map a +— « is a bijection, called canonical, from R
to R”. We have (R")"= R, and the canonical bijections R — R", R" — R are
mutual inverses. The map u +— *u~! defines an isomorphism from W(R) to
W(R") by means of which we identify these two groups.

4) Let V be a real vector space that is the direct sum of vector subspaces
Vi,..., V.. For all 4, let R; be a reduced root system in V;. Then the union
R of the R; is a root system in V|, called the direct sum of the R;. The group
W(R) can be identified with the product of the W(R;). If R # @ and R is not
the direct sum of two non-empty root systems, R is said to be irreducible. This
is equivalent to saying that W(R) is irreducible. Every reduced root system
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R is a direct sum of irreducible reduced root systems, uniquely determined
up to a permutation, and called the irreducible components of R.

5) Let R be a reduced root system in V. There exist scalar products
on V invariant under W(R). In the following, we denote by (z|y) such a
scalar product. If V and V* are identified using (z|y), we have o™ = (3%
The reflection s, is the orthogonal reflection which transforms a to —a. If
R is irreducible, the Weyl group acts transitively on the set of roots of a
given length. If R is irreducible, the scalar product (z|y) is unique up to
multiplication by a constant.

6) Let R be a reduced root system. For «, 8 € R, put
(o, 7)Y =n(a,B) € Z.

We have
n(o, ) = 2,
55(a) =a— n(a,,B),B,
_ 2(alp)
D= 1g18)
The only possibilities are the following, up to interchanging o and 3:
n(a, B) = n(B,a) = 0; (@, 5 o, ) = 3; SoSp of order 2;
n(a, B) =n(B,0) =1, (a B)=%; So8p of order 3;
I e ll=I1 B 1I;

n(a, B) = n(B,a) = —1; (a B) = %E saSp of order 3;
e fl=Il ﬂ I

n(o, f) =1, n(B,0) = 2; (Oz, B)=1; SaSp of order 4;
I 81l=v2] el

n(a, B) = -1, n(B,a) = —2; (a,B) = 3F; So8p of order 4;
1B1=v2 1 al;

n(a, B) =1, n(B,a) = 3; (o, 8) = %; sasp of order 6;
181= 3l

n(a,B) = -1, n(,a) = =3; (e, 0) = % Sa8g of order 6;
I81=v3lal;

n(a, B) = n(B,a) = 2; a=p

n(a, B) = n(B,a) = =2 o= —p

7) Let o, 8 € R. If (¢|3) > 0, @ — (3 is a root unless o = G. If («|B) < 0,
a+ f is a root unless a = —f.

8) Let o, B be two non-proportional roots. The set I of j € Z such that
B+ ja € R is an interval (—q, p) of Z containing 0. We have

g — ¢+1 _(B+alB+a)
p q= n(ﬁ,a), P (,6|,8)




SUMMARY OF PRINCIPAL PROPERTIES 295

Let S be the set of S+ jo for j € I. Then s4(S) = S and s, (8+pa) = f—qa.
We call S the a-chain of roots defined by 3, 8 — qga its origin, 8 + pa its end,
and p + q its length.

If T is an a-chain with origin v, the length of T is —n(7y, a).

9) Let X be the union of the Ker @™ (o € R). The connected components of
V —X are called the chambers of R in V. They are open simplicial cones. The
Weyl group acts simply-transitively on the set of chambers. If C is a chamber,
C is a fundamental domain for W(R). We have (z|y) > 0 for z,y € C. The
bijection from V to V* corresponding to (z|y) defines a bijection from the
set of chambers of R in V to the set of chambers of R™ in V*; we denote by
C” the chamber that is the image of C under this bijection.

10) Let C be a chamber of R. Let Ly, Lo, ..., L; be the walls of C. For all
i, there exists a unique root a; such that L; = L, and o; is on the same
side of L; as C. The family (ai,...,0;) is a basis of V, and C is the set of
z € V such that (o}, z) > 0 for all 4, in other words such that (a;|z) > 0 for
all 7. Then {ay,...,q;} is called the basis B(C) of R defined by C. We have
(as|laj) < 0 when ¢ # j. The group W(R) acts simply-transitively on the set
of bases. Every root is transformed by some element of W(R) to an element
of B(C). We have {ai,...,a;} = B(C).

11) Put s, = si, let S be the set of the s;, and let m;; be the order of
s;8j. The pair (W(R),S) is a Coxeter system with Coxeter matrix (m;); in
other words, W(R) is defined by the family of generators (s;)1<i<i and the
relations (s;s;)™% = 1. Two elements s; and s; are conjugate in W(R) if and
only if there exists a sequence of indices (41,42, ...,1q) such that ¢, = 14,13 = j
and each of the m;;;,,, is equal to 3.

12) Let n;; = n(a, 05 ). The matrix (n;j)1<i,j<i is called the Cartan
matrix of R. It is independent (up to a permutation of 1,2,...,1) of the
choice of C. We have n;; = 2,n;; € {0,—1,—2,-3} for ¢ # j. If two root
systems have the same Cartan matrix they are isomorphic.

13) Let G be the subgroup of A(R) that leaves B(C) stable. Then A(R)
is the semi-direct product of G by W(R).

14) The order relation on V (resp. V*) defined by C is the order relation,
compatible with the vector space structure of V (resp. V*), for which the
elements > 0 are the linear combinations of the a; (resp. ;) with coefficients
> 0. These elements are called positive for C, or for B(C). These order rela-
tions are also defined by C”. An element of V is > 0 if and only if its values on
C" are > 0. The set of elements > 0 for C contains C but is in general distinct
from C. Let z € V. Then = € C if and only if z > w(z) for all w € W(R);
and z € C if and only if z > w(z) for all w € W(R) distinct from 1.

15) Every root is either positive or negative for C. We denote by R (C)
the set of roots that are positive for C, so that R = Ry (C) U (—=R4(C)) is
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a partition of R. The reflection s; transforms a; to —a; and permutes the
elements of R4 (C) distinct from ¢; among themselves.

16) Let B be a basis of R. Every positive (resp. negative) root for B is
a linear combination of elements of B with coefficients that are integers > 0
(resp. < 0).

17) Let (81, B2, - - -, Bn) be a sequence of roots that are positive for C and
such that 8; + --- + B, is a root. There exists a permutation = € &,, such
that, for all i € {1,2,...,n}, Br1) + Br2) + - + Brg) is a root.

18) Let o € R (C). Then « € B(C) if and only if & cannot be written as
a sum of positive roots.

19) Let C be a chamber, (a3, as,...,q;) the corresponding basis. For any
subset J of I = {1,2,...,1}, let W; be the subgroup of W(R) generated by
the s; such that i € J. Let Cj be the set of linear combinations of the a;; with
7 € J and with coefficients > 0, so that Cj is a facet of C.

Let J C I, g € W(R). The following conditions are equivalent:

a) g leaves a point of Cj invariant;

b) g leaves every point of Cj invariant;

c) g leaves every point of C; invariant;

d) 9(Cy) = Cy;
e) 9(C;) = Cy;
f)geW;.

Let J,J C {1,2,...,l} and g,¢’ € W(R). The following conditions are
equivalent:

a) 9(Cs) = ¢'(Cy);

b) 9(C3) N g'(Cy) # @;

c) gWy = g'Wys;

d) J=1J and ¢’ € gWj.

Let J1,J2,...,J, Cland J=J;N---NJ,. Then Wy =Wy N---NWj,.

For all g € W(R), there exists J C I such that CNg(C) = Cy and g € Wj.

20) Let P be a subset of R. Then P is said to be closed if the conditions
a€P,BeP,a+ P €Rimply a+ B € P; and P is said to be parabolic if P
is closed and P U (—P) = R. The following conditions are equivalent:

a) P is parabolic;

b) P is closed and there exists a chamber C such that P D R (C);

c) there exist a chamber C and a subset X of B(C) such that P is the union
of R4+ (C) and the set Q of roots that are linear combinations of elements of
XY with coefficients that are integers < 0.

Assume that these conditions are satisfied and let V; be the vector sub-
space of V generated by X'. Then

PN(-P)=QuU(-Q)=ViNR,
and PN (—P) is a root system in V; with basis X.
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Let P’,C’, %’ have analogous properties. If there exists an element of
W(R) transforming P to P’, there exists an element of W(R) transforming C
to C/, X to X' and P to P'.

21) Let P be a subset of R. The following conditions are equivalent:

a) there exists a chamber C such that P = R4 (C);

b) P is closed, and {P,—P} is a partition of R.

The chamber C is then unique.

Assume that V is equipped with the structure of an ordered vector space
such that every root is either positive or negative. Let Ry be the set of

positive roots for this structure. There exists a unique chamber C such that
R+ = R+ (C)

22) A subset B of R is a basis of R if and only if the elements of B are
linearly independent and every root is a linear combination of elements of B
with coefficients that are all > 0 or all < 0.

23) Let P be a closed subset of R such that P N (—P) = @. There exists
a chamber C such that P C R4 (C).

24) A subset P of R is called symmetric if P = —P. Let P be a subset of
R, and let V; (resp. I') be the vector subspace (resp. the additive subgroup)
of V generated by P. The following conditions are equivalent:

a) P is closed and symmetric;

b) P is closed and P is a root system in Vj;
c)'NR=P.

25) Assume that R is irreducible. Let C be a chamber; put
B(C) = {(11, ce ,O[l}.

There exists a highest element of R (for the order defined by C), that is, an
element & = njay + -+ - + nyag of R such that, for any root

piai + -+ pag,

ny=pi1,...,n = p. Then @ € C and || & ||>|| « || for every root a.

26) The subgroup of V generated by R is denoted by Q(R); the elements
of Q(R) are called the radical weights of R. The group Q(R) is a discrete
subgroup of V of rank [ = dim V. Any basis of R is a basis of Q(R).

The subgroup of V associated to Q(R") is denoted by P(R); the elements
of P(R) are called the weights of R. The group P(R) is a discrete subgroup of
V of rank [ containing Q(R). The groups P(R)/Q(R), P(R")/Q(R") are finite
and isomorphic; their order f is called the connection index of R. With the
notation of 25), the order of W(R) is llning ... m f.

The group A(R) leaves P(R), Q(R) stable, and hence acts on P(R)/Q(R).
The group W(R) acts trivially on P(R)/Q(R), so A(R)/W(R) acts on
P(R)/Q(R).
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27) Let C be a chamber. Let B = (a4, ..., ®;) be the corresponding basis
of R. The dual basis (wi,...,w;) of (ai,...,a;) is a basis of P(R). The
w; are called the fundamental weights (for C, or for B). The set of linear
combinations of the w; with coefficients > 0 (resp. > 0) is C (resp. C).
The linear combinations of the w; with integer coefficients > 0 are called
the dominant weights. Every element of P(R) can be transformed by some
element of W(R) to a unique dominant weight. The dominant weights are

the elements w of V such that %Tl%j) is an integer > 0 for all 4.

28) Let p= 3 > . Then, p=w;+- 4w €C.

a€R4(C)

29) Let T be the group of translations of V* whose vectors belong to
Q(R"). The group of affine tranformations of V* generated by T and W(R)
is the semi-direct product of W(R) by T. This group is called the affine Weyl
group of R and is denoted by W,(R). It acts properly on V*. For @ € R
and X € Z, let so,» be the map z* — z* — (z*,@)a” + Aa’; this is an affine
reflection, and the set L, ) of its fixed points is defined by the equation
(z*,a@) = X\; we have L, » = Ly + %)\a'. The sq,» are the affine reflections
belonging to W, (R), and they generate the group W, (R).

30) Let E be the union of the Ly ) for @ € R and A € Z. The connected
components of V* — E are called the alcoves of R. If R is irreducible, each
alcove is an open simplex; in general, an alcove is a product of open simplices.
The group W, (R) acts simply-transitively on the set of alcoves. If C is an
alcove, C is a fundamental domain for W, (R). Let 01, . .., 04 be the reflections
in W4 (R) corresponding to the walls of C; let p;; be the order of o;0;. Then
W,(R) is defined by the generators o; and the relations (o;0;)*% = 1.

31) If p € P(R"), there exists an alcove C such that p is an extremal point
of C. If C"'is an alcove, there is a unique radical weight that is an extremal
point of C’.

Let x* € V*; the following conditions are equivalent:

a) z* € P(R");

b) for all a € R, the hyperplane parallel to L,, and passing through z* is
one of the Lq x.

Let C' be a chamber of R". There exists a unique alcove C contained in C’
and such that 0 € C. Assume that R is irreducible, and let 8 be the highest
root of R (for C’); then C is the set of * € C’ such that (z*,5) < 1.

32) Let S be the symmetric algebra of V, SW the subalgebra consisting of
the elements invariant under W = W(R), g the order of W, [ = dim V. There
exist homogeneous, algebraically independent elements I,1o,...,I; that gen-
erate SW. The SW-module S has a basis consisting of g homogeneous elements.
Let a be the ideal of S generated by the homogeneous elements of SW of de-
gree > 0; the representation of W on S/a, induced by the representation of W
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on S by passage to the quotient, is isomorphic to the regular representation
of W (over R).

33) Let Ij,I,...,I; be homogeneous, algebraically independent elements
generating SW. Their degrees ki, ks, ...,k are uniquely determined (up to

l
order) by R. We have g = k1ksy ... k. The number of roots is 2 ;(ki -1).

34) An element A of S is said to be anti-invariant under W if w(A) =
det(w).A for all w € W. Let R = R; U (—R;) be a partition of R, and put

= l_l[:{ a. The element 7 of S is anti-invariant; the anti-invariant elements
a€R;

of S are the elements of the form 71, with I € SW.

35) Let E be the group algebra Z[P] of the group of weights P of R. If

p € P, we denote by eP the corresponding element of E. We have ePeP = PP

and the eP form a basis of E. There is an action of the group W on E such

that w(e?) = e*®) if w € W and p € P. An element z € E is said to

be anti-invariant if w(z) = det(w).z for all w € W. For all z € E, put

J(z) = %:W det(w).w(z). Let C be a chamber. The elements J(eP), where
w

p € PN C, form a basis of the group of anti-invariant elements of E. If p is
half the sum of the positive roots, we have:

J(ef) =€ al;lo(l —e %) = al;lo(ea/z - 6_0/2),

the products being taken over the set of roots > 0.
36) With the notation of 35), put

zp = J(eP*P)/J(e?) for p€P.

The 2, for p € PNC, form a basis of the group EW of elements of E invariant
under W. If wy,...,w; are the fundamental weights of R, the elements z,,,
1 < i <1, are algebraically independent and generate the ring EW.

37) Let C be a chamber of R, (a1,...,q;) the corresponding basis. The
element ¢ = 8185 ...5; of W is called the Coxeter transformation of R. The
conjugacy class of ¢ does not depend on C or on the numbering of the «;. The
order h of c is called the Coxeter number of R. The eigenvalues of ¢ are of
the form expzthmi, where the integers my,mo, ..., m; (called the exponents
of R) are such that 1 <m; <me <---<my <h-1.

Assume that R is irreducible. Then

m; =1, my=h—1.
mj+mp-;=h (1<j<I).
1

m +me+---+my = §lh = %Card(R)
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Every m € {1,2,...,h — 1} coprime to h is equal to exactly one of the m;.
The numbers m;+1,mg+1,...,m;+1 coincide, up to order, with the integers
denoted by ki, k2, . . ., k; in 33). With the notation of 25), ny+---+n; = h—1.
There exist [ orbits of {1,¢,¢c?, ..., ch‘l} on R, each of which has h elements.
If h is even, c*/? transforms C to —C. We have —1 € W if and only if the
exponents of W are all odd; in that case, h is even and ¢*/? = —1.
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